IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0509016.html
   My bibliography  Save this paper

Absolutely continuous laws of Jump-Diffusions in finite and infinite dimensions with applications to mathematical Finance

Author

Listed:
  • Barbara Forster
  • Eva Luetkebohmert
  • Josef Teichmann

Abstract

In mathematical Finance calculating the Greeks by Malliavin weights has proved to be a numerically satisfactory procedure for finite-dimensional It\^{o}-diffusions. The existence of Malliavin weights relies on absolute continuity of laws of the projected diffusion process and a sufficiently regular density. In this article we first prove results on absolute continuity for laws of projected jump-diffusion processes in finite and infinite dimensions, and a general result on the existence of Malliavin weights in finite dimension. In both cases we assume H\"ormander conditions and hypotheses on the invertibility of the so-called linkage operators. The purpose of this article is to show that for the construction of numerical procedures for the calculation of the Greeks in fairly general jump-diffusion cases one can proceed as in a pure diffusion case. We also show how the given results apply to infinite dimensional questions in mathematical Finance. There we start from the Vasi\v{c}ek model, and add -- by pertaining no arbitrage -- a jump diffusion component. We prove that we can obtain in this case an interest rate model, where the law of any projection is absolutely continuous with respect to Lebesgue measure on $\mathbb{R}^M $.

Suggested Citation

  • Barbara Forster & Eva Luetkebohmert & Josef Teichmann, 2005. "Absolutely continuous laws of Jump-Diffusions in finite and infinite dimensions with applications to mathematical Finance," Papers math/0509016, arXiv.org, revised Oct 2008.
  • Handle: RePEc:arx:papers:math/0509016
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0509016
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    2. Youssef El-Khatib & Nicolas Privault, 2004. "Computations of Greeks in a market with jumps via the Malliavin calculus," Finance and Stochastics, Springer, vol. 8(2), pages 161-179, May.
    3. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albeverio, Sergio & Mastrogiacomo, Elisa & Smii, Boubaker, 2013. "Small noise asymptotic expansions for stochastic PDE’s driven by dissipative nonlinearity and Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2084-2109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Khatib, Youssef & Abdulnasser, Hatemi-J, 2011. "On the calculation of price sensitivities with jump-diffusion structure," MPRA Paper 30596, University Library of Munich, Germany.
    2. Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    3. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    4. Masafumi Hayashi, 2010. "Coefficients of Asymptotic Expansions of SDE with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 373-389, December.
    5. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    6. Atsushi Takeuchi, 2010. "Bismut–Elworthy–Li-Type Formulae for Stochastic Differential Equations with Jumps," Journal of Theoretical Probability, Springer, vol. 23(2), pages 576-604, June.
    7. Kawai, Reiichiro & Takeuchi, Atsushi, 2010. "Sensitivity analysis for averaged asset price dynamics with gamma processes," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 42-49, January.
    8. Bilgi Yilmaz, 2018. "Computation of option greeks under hybrid stochastic volatility models via Malliavin calculus," Papers 1806.06061, arXiv.org.
    9. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    10. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    11. Tappe, Stefan, 2016. "Affine realizations with affine state processes for stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2062-2091.
    12. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    13. Carl Chiarella & Sara Pasquali & Wolfgang Runggaldier, 2001. "On Filtering in Markovian Term Structure Models (An Approximation Approach)," Research Paper Series 65, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Fard, Farzad Alavi & Siu, Tak Kuen, 2013. "Pricing participating products with Markov-modulated jump–diffusion process: An efficient numerical PIDE approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 712-721.
    15. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    16. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2010. "Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility," Research Paper Series 283, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    18. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Li, Haitao & Ye, Xiaoxia & Yu, Fan, 2020. "Unifying Gaussian dynamic term structure models from a Heath–Jarrow–Morton perspective," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1153-1167.
    20. Fred Benth & Jukka Lempa, 2014. "Optimal portfolios in commodity futures markets," Finance and Stochastics, Springer, vol. 18(2), pages 407-430, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0509016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.