IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v8y2004i2p161-179.html
   My bibliography  Save this article

Computations of Greeks in a market with jumps via the Malliavin calculus

Author

Listed:
  • Youssef El-Khatib
  • Nicolas Privault

Abstract

Using the Malliavin calculus on Poisson space we compute Greeks in a market driven by a discontinuous process with Poisson jump times and random jump sizes, following a method initiated on the Wiener space in [5]. European options do not satisfy the regularity conditions required in our approach, however we show that Asian options can be considered due to a smoothing effect of the integral over time. Numerical simulations are presented for the Delta and Gamma of Asian options, and confirm the efficiency of this approach over classical finite difference Monte-Carlo approximations of derivatives. Copyright Springer-Verlag Berlin/Heidelberg 2004

Suggested Citation

  • Youssef El-Khatib & Nicolas Privault, 2004. "Computations of Greeks in a market with jumps via the Malliavin calculus," Finance and Stochastics, Springer, vol. 8(2), pages 161-179, May.
  • Handle: RePEc:spr:finsto:v:8:y:2004:i:2:p:161-179
    DOI: 10.1007/s00780-003-0111-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-003-0111-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-003-0111-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    2. Privault, Nicolas & Wei, Xiao, 2004. "A Malliavin calculus approach to sensitivity analysis in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 679-690, December.
    3. Anastasis Kratsios, 2019. "Partial Uncertainty and Applications to Risk-Averse Valuation," Papers 1909.13610, arXiv.org, revised Oct 2019.
    4. Masafumi Hayashi, 2010. "Coefficients of Asymptotic Expansions of SDE with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 373-389, December.
    5. Bilgi Yilmaz, 2018. "Computation of option greeks under hybrid stochastic volatility models via Malliavin calculus," Papers 1806.06061, arXiv.org.
    6. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    7. Barbara Forster & Eva Luetkebohmert & Josef Teichmann, 2005. "Absolutely continuous laws of Jump-Diffusions in finite and infinite dimensions with applications to mathematical Finance," Papers math/0509016, arXiv.org, revised Oct 2008.
    8. Reiichiro Kawai, 2012. "Likelihood ratio gradient estimation for Meixner distribution and Lévy processes," Computational Statistics, Springer, vol. 27(4), pages 739-755, December.
    9. El-Khatib, Youssef & Abdulnasser, Hatemi-J, 2011. "On the calculation of price sensitivities with jump-diffusion structure," MPRA Paper 30596, University Library of Munich, Germany.
    10. Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    11. Yeliz Yolcu-Okur & Tilman Sayer & Bilgi Yilmaz & B. Alper Inkaya, 2018. "Computation of the Delta of European options under stochastic volatility models," Computational Management Science, Springer, vol. 15(2), pages 213-237, June.
    12. Kawai, Reiichiro & Takeuchi, Atsushi, 2010. "Sensitivity analysis for averaged asset price dynamics with gamma processes," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 42-49, January.
    13. Atsushi Takeuchi, 2010. "Bismut–Elworthy–Li-Type Formulae for Stochastic Differential Equations with Jumps," Journal of Theoretical Probability, Springer, vol. 23(2), pages 576-604, June.
    14. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    15. Ayub Ahmadi & Mahdieh Tahmasebi, 2024. "Pricing and delta computation in jump-diffusion models with stochastic intensity by Malliavin calculus," Papers 2405.00473, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:8:y:2004:i:2:p:161-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.