IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0302104.html
   My bibliography  Save this paper

Optimal Convergence Trading

Author

Listed:
  • Vladislav Kargin

Abstract

This article examines arbitrage investment in a mispriced asset when the mispricing follows the Ornstein-Uhlenbeck process and a credit-constrained investor maximizes a generalization of the Kelly criterion. The optimal differentiable and threshold policies are derived. The optimal differentiable policy is linear with respect to mispricing and risk-free in the long run. The optimal threshold policy calls for investing immediately when the mispricing is greater than zero with the investment amount inversely proportional to the risk aversion parameter. The investment is risky even in the long run. The results are consistent with the belief that credit-constrained arbitrageurs should be risk-neutral if they are to engage in convergence trading.

Suggested Citation

  • Vladislav Kargin, 2003. "Optimal Convergence Trading," Papers math/0302104, arXiv.org, revised Aug 2003.
  • Handle: RePEc:arx:papers:math/0302104
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0302104
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    3. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    4. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    5. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    6. Jun Liu, 2004. "Losing Money on Arbitrage: Optimal Dynamic Portfolio Choice in Markets with Arbitrage Opportunities," The Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 611-641.
    7. Grossman, Sanford J. & Vila, Jean-Luc, 1992. "Optimal Dynamic Trading with Leverage Constraints," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(2), pages 151-168, June.
    8. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    9. Bielecki, Tomasz R. & Pliska, Stanley R. & Sherris, Michael, 2000. "Risk sensitive asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1145-1177, July.
    10. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    11. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    12. Brennan, Michael J. & Schwartz, Eduardo S. & Lagnado, Ronald, 1997. "Strategic asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1377-1403, June.
    13. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingdong Lv & Bernhard K. Meister, 2010. "Implication Of The Kelly Criterion For Multi-Dimensional Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 93-112.
    2. Yingdong Lv & Bernhard K. Meister, 2009. "Application of the Kelly Criterion to Ornstein-Uhlenbeck Processes," Papers 0903.2910, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    2. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    3. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    4. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    5. Sørensen, Carsten & Trolle, Anders Bjerre, 2006. "Dynamic asset allocation and latent variables," Working Papers 2004-8, Copenhagen Business School, Department of Finance.
    6. Kaminski, Kathryn M. & Lo, Andrew W., 2014. "When do stop-loss rules stop losses?," Journal of Financial Markets, Elsevier, vol. 18(C), pages 234-254.
    7. Daniel Giamouridis & Athanasios Sakkas & Nikolaos Tessaromatis, 2017. "Dynamic Asset Allocation with Liabilities," European Financial Management, European Financial Management Association, vol. 23(2), pages 254-291, March.
    8. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    9. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    10. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    11. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    12. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    13. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    14. LuisM. Viceira & John Y. Campbell, 2001. "Who Should Buy Long-Term Bonds?," American Economic Review, American Economic Association, vol. 91(1), pages 99-127, March.
    15. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    16. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    17. Thomas Q. Pedersen, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-60, Department of Economics and Business Economics, Aarhus University.
    18. Castaneda, Pablo & Rudolph, Heinz P., 2011. "Upgrading investment regulations in second pillar pension systems : a proposal for Colombia," Policy Research Working Paper Series 5775, The World Bank.
    19. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    20. Rapach, David E. & Wohar, Mark E., 2009. "Multi-period portfolio choice and the intertemporal hedging demands for stocks and bonds: International evidence," Journal of International Money and Finance, Elsevier, vol. 28(3), pages 427-453, April.

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0302104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.