IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-9902018.html
   My bibliography  Save this paper

Modeling interest rate dynamics: an infinite-dimensional approach

Author

Listed:
  • Rama Cont

    (CMAP - Ecole Polytechnique)

Abstract

We present a family of models for the term structure of interest rates which describe the interest rate curve as a stochastic process in a Hilbert space. We start by decomposing the deformations of the term structure into the variations of the short rate, the long rate and the fluctuations of the curve around its average shape. This fluctuation is then described as a solution of a stochastic evolution equation in an infinite dimensional space. In the case where deformations are local in maturity, this equation reduces to a stochastic PDE, of which we give the simplest example. We discuss the properties of the solutions and show that they capture in a parsimonious manner the essential features of yield curve dynamics: imperfect correlation between maturities, mean reversion of interest rates and the structure of principal components of term structure deformations. Finally, we discuss calibration issues and show that the model parameters have a natural interpretation in terms of empirically observed quantities.

Suggested Citation

  • Rama Cont, 1999. "Modeling interest rate dynamics: an infinite-dimensional approach," Papers cond-mat/9902018, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/9902018
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/9902018
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    3. Jean-Philippe Bouchaud & Nicolas Sagna & Rama Cont & Nicole El-Karoui & Marc Potters, 1999. "Phenomenology of the interest rate curve," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 209-232.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. D. P. Kennedy, 1994. "The Term Structure Of Interest Rates As A Gaussian Random Field," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 247-258, July.
    6. Peszat, Szymon & Zabczyk, Jerzy, 1997. "Stochastic evolution equations with a spatially homogeneous Wiener process," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 187-204, December.
    7. repec:crs:wpaper:9611 is not listed on IDEAS
    8. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    9. Jean-Philippe Bouchaud & Nicolas Sagna & Rama Cont & Nicole El-Karoui & Marc Potters, 1998. "Strings Attached," Science & Finance (CFM) working paper archive 500049, Science & Finance, Capital Fund Management.
    10. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    11. Dybvig, Philip H & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1996. "Long Forward and Zero-Coupon Rates Can Never Fall," The Journal of Business, University of Chicago Press, vol. 69(1), pages 1-25, January.
    12. Schaefer, Stephen M & Schwartz, Eduardo S, 1987. "Time-Dependent Variance and the Pricing of Bond Options," Journal of Finance, American Finance Association, vol. 42(5), pages 1113-1128, December.
    13. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    14. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Yong, 1999. "Term structure modeling and asymptotic long rate," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 327-336, December.
    2. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    3. repec:uts:finphd:40 is not listed on IDEAS
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Markus Leippold & Liuren Wu, 1999. "The Potential Approach to Bond and Currency Pricing," Finance 9903004, University Library of Munich, Germany.
    6. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    7. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    8. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    9. David K. Backus & Stanley E. Zin, 1994. "Reverse Engineering the Yield Curve," Working Papers 94-09, New York University, Leonard N. Stern School of Business, Department of Economics.
    10. repec:wyi:journl:002108 is not listed on IDEAS
    11. Zura Kakushadze, 2015. "Coping with Negative Short-Rates," Papers 1502.06074, arXiv.org, revised Aug 2015.
    12. repec:wyi:journl:002109 is not listed on IDEAS
    13. Schulze, Klaas, 2008. "Asymptotic Maturity Behavior of the Term Structure," Bonn Econ Discussion Papers 11/2008, University of Bonn, Bonn Graduate School of Economics (BGSE).
    14. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
    15. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    16. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    17. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2015. "Stochastic string models with continuous semimartingales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 229-246.
    18. Casassus, Jaime & Collin-Dufresne, Pierre & Goldstein, Bob, 2005. "Unspanned stochastic volatility and fixed income derivatives pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2723-2749, November.
    19. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    20. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    21. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    22. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    23. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/9902018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.