IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0502029.html
   My bibliography  Save this paper

Arbitrage Opportunities and their Implications to Derivative Hedging

Author

Listed:
  • Stephanos Panayides

Abstract

We explore the role that random arbitrage opportunities play in hedging financial derivatives. We extend the asymptotic pricing theory presented by Fedotov and Panayides [Stochastic arbitrage return and its implication for option pricing, Physica A 345 (2005), 207-217] for the case of hedging a derivative when arbitrage opportunities are present in the market. We restrict ourselves to finding hedging confidence intervals that can be adapted to the amount of arbitrage risk an investor will permit to be exposed to. The resulting hedging bands are independent of the detailed statistical characteristics of the arbitrage opportunities.

Suggested Citation

  • Stephanos Panayides, 2005. "Arbitrage Opportunities and their Implications to Derivative Hedging," Papers cond-mat/0502029, arXiv.org, revised Jun 2005.
  • Handle: RePEc:arx:papers:cond-mat/0502029
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0502029
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fedotov, Sergei & Panayides, Stephanos, 2005. "Stochastic arbitrage return and its implication for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 207-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Haven, 2008. "Private Information and the ‘Information Function’: A Survey of Possible Uses," Theory and Decision, Springer, vol. 64(2), pages 193-228, March.
    2. Haven, Emmanuel, 2008. "Elementary Quantum Mechanical Principles and Social Science: Is There a Connection?," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 5(1), pages 41-58, March.
    3. Contreras, Mauricio & Montalva, Rodrigo & Pellicer, Rely & Villena, Marcelo, 2010. "Dynamic option pricing with endogenous stochastic arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3552-3564.
    4. Mauricio Contreras G, 2020. "Endogenous Stochastic Arbitrage Bubbles and the Black--Scholes model," Papers 2009.09329, arXiv.org.
    5. Contreras G., Mauricio, 2021. "Endogenous stochastic arbitrage bubbles and the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Contreras, M. & Echeverría, J. & Peña, J.P. & Villena, M., 2020. "Resonance phenomena in option pricing with arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Panayides, Stephanos, 2006. "Arbitrage opportunities and their implications to derivative hedging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 289-296.
    8. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo & Ruiz, Aaron, 2010. "A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5447-5459.
    9. Mauricio Contreras & Rely Pellicer & Daniel Santiagos & Marcelo Villena, 2015. "Calibration and simulation of arbitrage effects in a non-equilibrium quantum Black-Scholes model by using semiclassical methods," Papers 1512.05377, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0502029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.