IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0402389.html
   My bibliography  Save this paper

An analysis of Cross-correlations in South African Market data

Author

Listed:
  • Diane Wilcox
  • Tim Gebbie

Abstract

We apply random matrix theory to compare correlation matrix estimators C obtained from emerging market data. The correlation matrices are constructed from 10 years of daily data for stocks listed on the Johannesburg Stock Exchange (JSE) from January 1993 to December 2002. We test the spectral properties of C against random matrix predictions and find some agreement between the distributions of eigenvalues, nearest neighbour spacings, distributions of eigenvector components and the inverse participation ratios for eigenvectors. We show that interpolating both missing data and illiquid trading days with a zero-order hold increases agreement with RMT predictions. For the more realistic estimation of correlations in an emerging market, we suggest a pairwise measured-data correlation matrix. For the data set used, this approach suggests greater temporal stability for the leading eigenvectors. An interpretation of eigenvectors in terms of trading strategies is given in lieu of classification by economic sectors.

Suggested Citation

  • Diane Wilcox & Tim Gebbie, 2004. "An analysis of Cross-correlations in South African Market data," Papers cond-mat/0402389, arXiv.org, revised Sep 2006.
  • Handle: RePEc:arx:papers:cond-mat/0402389
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0402389
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Pafka, Szilárd & Kondor, Imre, 2003. "Noisy covariance matrices and portfolio optimization II," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 487-494.
    3. Drożdż, S & Kwapień, J & Speth, J & Wójcik, M, 2002. "Identifying complexity by means of matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 355-361.
    4. Pafka, Szilárd & Kondor, Imre, 2004. "Estimated correlation matrices and portfolio optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 623-634.
    5. Galluccio, Stefano & Bouchaud, Jean-Philippe & Potters, Marc, 1998. "Rational decisions, random matrices and spin glasses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 259(3), pages 449-456.
    6. S. Drozdz & J. Kwapien & F. Gruemmer & F. Ruf & J. Speth, 2001. "Quantifying dynamics of the financial correlations," Papers cond-mat/0102402, arXiv.org.
    7. Drożdż, S. & Kwapień, J. & Grümmer, F. & Ruf, F. & Speth, J., 2001. "Quantifying the dynamics of financial correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 144-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilcox, Diane & Gebbie, Tim, 2007. "An analysis of cross-correlations in an emerging market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 584-598.
    2. Diane Wilcox & Tim Gebbie, 2004. "Serial Correlation, Periodicity and Scaling of Eigenmodes in an Emerging Market," Papers cond-mat/0404416, arXiv.org, revised Sep 2007.
    3. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    4. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    5. Jerome Garnier-Brun & Michael Benzaquen & Stefano Ciliberti & Jean-Philippe Bouchaud, 2021. "A new spin on optimal portfolios and ecological equilibria," Papers 2104.00668, arXiv.org, revised Oct 2021.
    6. Stephan Süss, 2012. "The pricing of idiosyncratic risk: evidence from the implied volatility distribution," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(2), pages 247-267, June.
    7. Varga-Haszonits, I. & Kondor, I., 2007. "Noise sensitivity of portfolio selection in constant conditional correlation GARCH models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 307-318.
    8. Jerome Garnier-Brun & Michael Benzaquen & Stefano Ciliberti & Jean-Philippe Bouchaud, 2021. "A new spin on optimal portfolios and ecological equilibria," Post-Print hal-03378915, HAL.
    9. Giacomo Livan & Jun-ichi Inoue & Enrico Scalas, 2012. "On the non-stationarity of financial time series: impact on optimal portfolio selection," Papers 1205.0877, arXiv.org, revised Jul 2012.
    10. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    11. Marsili, Matteo & Raffaelli, Giacomo & Ponsot, Benedicte, 2009. "Dynamic instability in generic model of multi-assets markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1170-1181, May.
    12. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    13. Nobi, Ashadun & Lee, Jae Woo, 2016. "State and group dynamics of world stock market by principal component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 85-94.
    14. Schäfer, Rudi & Guhr, Thomas, 2010. "Local normalization: Uncovering correlations in non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3856-3865.
    15. Xiaoping Zhou & Dmitry Malioutov & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Smooth monotone covariance for elliptical distributions and applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1555-1571, September.
    16. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    17. Liusha Yang & Matthew R. Mckay & Romain Couillet, 2018. "High-Dimensional MVDR Beamforming: Optimized Solutions Based on Spiked Random Matrix Models," Post-Print hal-01957672, HAL.
    18. Wilcox, Diane & Gebbie, Tim, 2004. "On the analysis of cross-correlations in South African market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 294-298.
    19. Lisewski, Andreas Martin & Lichtarge, Olivier, 2010. "Untangling complex networks: Risk minimization in financial markets through accessible spin glass ground states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3250-3253.
    20. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0402389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.