IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0104362.html
   My bibliography  Save this paper

Variety of Stock Returns in Normal and Extreme Market Days: The August 1998 Crisis

Author

Listed:
  • Fabrizio Lillo
  • Giovanni Bonanno
  • Rosario N. Mantegna

Abstract

We investigate the recently introduced variety of a set of stock returns traded in a financial market. This investigation is done by considering daily and intraday time horizons in a 15-day time period centered at the August 31st, 1998 crash of the S&P500 index. All the stocks traded at the NYSE during that period are considered in the present analysis. We show that the statistical properties of the variety observed in analyses of daily returns also hold for intraday returns. In particular the largest changes of the variety of the return distribution turns out to be most localized at the opening or (to a less degree) at the closing of the market.

Suggested Citation

  • Fabrizio Lillo & Giovanni Bonanno & Rosario N. Mantegna, 2001. "Variety of Stock Returns in Normal and Extreme Market Days: The August 1998 Crisis," Papers cond-mat/0104362, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0104362
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0104362
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bak, Per & Chen, Kan & Scheinkman, Jose & Woodford, Michael, 1993. "Aggregate fluctuations from independent sectoral shocks: self-organized criticality in a model of production and inventory dynamics," Ricerche Economiche, Elsevier, vol. 47(1), pages 3-30, March.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Laurent Laloux & Pierre Cizeau & Jean-Philippe Bouchaud & Marc Potters, 1998. "Noise dressing of financial correlation matrices," Science & Finance (CFM) working paper archive 500051, Science & Finance, Capital Fund Management.
    4. Fabrizio Lillo & Rosario N. Mantegna, 2000. "Symmetry alteration of ensemble return distribution in crash and rally days of financial markets," Papers cond-mat/0002438, arXiv.org.
    5. Takayasu, Hideki & Miura, Hitoshi & Hirabayashi, Tadashi & Hamada, Koichi, 1992. "Statistical properties of deterministic threshold elements — the case of market price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 184(1), pages 127-134.
    6. F. Lillo & R.N. Mantegna, 2001. "Empirical properties of the variety of a financial portfolio and the single-index model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 503-509, April.
    7. Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Correlation structure of extreme stock returns," Science & Finance (CFM) working paper archive 0006034, Science & Finance, Capital Fund Management.
    8. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    9. Jean-Philippe Bouchaud & Didier Sornette, 1994. "The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes," Science & Finance (CFM) working paper archive 500040, Science & Finance, Capital Fund Management.
    10. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    11. P. Cizeau & M. Potters & J-P. Bouchaud, 2001. "Correlation structure of extreme stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 217-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    2. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    3. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Shocks in financial markets, price expectation, and damped harmonic oscillators," Papers 1103.1992, arXiv.org, revised Sep 2011.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    2. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    3. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    4. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    6. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    7. Matthias Raddant & Friedrich Wagner, 2017. "Transitions in the stock markets of the US, UK and Germany," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 289-297, February.
    8. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    9. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    10. Nils Bertschinger & Axel A. Araneda, 2021. "Cross-ownership as a structural explanation for rising correlations in crisis times," Papers 2112.04824, arXiv.org.
    11. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    12. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    13. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    14. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    15. Zura Kakushadze & Willie Yu, 2017. "Open Source Fundamental Industry Classification," Papers 1706.04210, arXiv.org, revised Dec 2017.
    16. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    17. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    18. Zura Kakushadze & Willie Yu, 2017. "Open Source Fundamental Industry Classification," Data, MDPI, vol. 2(2), pages 1-77, June.
    19. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    20. Fabrizio Lillo & Rosario N. Mantegna & Jean-Philippe Bouchaud & Marc Potters, 2001. "Introducing Variety in Risk Management," Papers cond-mat/0107208, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0104362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.