IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0104313.html
   My bibliography  Save this paper

Derivation of ARCH(1) process from market price changes based on deterministic microscopic multi-agent

Author

Listed:
  • Aki-Hiro Sato
  • Hideki Takayasu

Abstract

A model of fluctuations in the market price including many deterministic dealers, who predict their buying and selling prices from the latest price change, is developed. We show that price changes of the model is approximated by ARCH(1) process. We conclude that predictions of dealers affected by the past price changes cause the fat tails of probability density function. We believe that this study bridges stochastic processes in econometrics with multi-agent simulation approaches.

Suggested Citation

  • Aki-Hiro Sato & Hideki Takayasu, 2001. "Derivation of ARCH(1) process from market price changes based on deterministic microscopic multi-agent," Papers cond-mat/0104313, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0104313
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0104313
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    3. Takayasu, Hideki & Miura, Hitoshi & Hirabayashi, Tadashi & Hamada, Koichi, 1992. "Statistical properties of deterministic threshold elements — the case of market price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 184(1), pages 127-134.
    4. Sato, Aki-Hiro & Takayasu, Hideki, 1998. "Dynamic numerical models of stock market price: from microscopic determinism to macroscopic randomness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 250(1), pages 231-252.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Deutsch, J.M., 1994. "Probability distributions for one component equations with multiplicative noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(3), pages 433-444.
    7. Johnson, N.F. & Jarvis, S. & Jonson, R. & Cheung, P. & Kwong, Y.R. & Hui, P.M., 1998. "Volatility and agent adaptability in a self-organizing market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 258(1), pages 230-236.
    8. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Krause, 2003. "Inventory Effects on Daily Returns in Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 739-765.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    2. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    3. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    4. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    5. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    6. Sabiou M. Inoua, 2020. "News-Driven Expectations and Volatility Clustering," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    7. Aki-Hiro Sato & Hideki Takayasu, 2001. "Market price simulator based on analog electrical circuit," Papers cond-mat/0104318, arXiv.org.
    8. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    9. Tetsuya Takaishi, 2014. "Analysis of Spin Financial Market by GARCH Model," Papers 1409.0118, arXiv.org.
    10. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    11. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    13. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    14. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    15. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    16. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    17. Siddiqi, Hammad, 2007. "Rational Interacting Agents and Volatility Clustering: A New Approach," MPRA Paper 2984, University Library of Munich, Germany.
    18. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    19. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    20. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0104313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.