IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.13722.html
   My bibliography  Save this paper

Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve

Author

Listed:
  • Remi Genet

Abstract

Volume-Weighted Average Price (VWAP) is arguably the most prevalent benchmark for trade execution as it provides an unbiased standard for comparing performance across market participants. However, achieving VWAP is inherently challenging due to its dependence on two dynamic factors, volumes and prices. Traditional approaches typically focus on forecasting the market's volume curve, an assumption that may hold true under steady conditions but becomes suboptimal in more volatile environments or markets such as cryptocurrency where prediction error margins are higher. In this study, I propose a deep learning framework that directly optimizes the VWAP execution objective by bypassing the intermediate step of volume curve prediction. Leveraging automatic differentiation and custom loss functions, my method calibrates order allocation to minimize VWAP slippage, thereby fully addressing the complexities of the execution problem. My results demonstrate that this direct optimization approach consistently achieves lower VWAP slippage compared to conventional methods, even when utilizing a naive linear model presented in arXiv:2410.21448. They validate the observation that strategies optimized for VWAP performance tend to diverge from accurate volume curve predictions and thus underscore the advantage of directly modeling the execution objective. This research contributes a more efficient and robust framework for VWAP execution in volatile markets, illustrating the potential of deep learning in complex financial systems where direct objective optimization is crucial. Although my empirical analysis focuses on cryptocurrency markets, the underlying principles of the framework are readily applicable to other asset classes such as equities.

Suggested Citation

  • Remi Genet, 2025. "Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve," Papers 2502.13722, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2502.13722
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.13722
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hugo Inzirillo & Rémi Genet, 2024. "SigKAN: Signature-Weighted Kolmogorov-Arnold Networks for Time Series," Post-Print hal-04923998, HAL.
    2. Foster, F Douglas & Viswanathan, S, 1990. "A Theory of the Interday Variations in Volume, Variance, and Trading Costs in Securities Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 593-624.
    3. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    4. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    5. Olivier Gu'eant & Guillaume Royer, 2013. "VWAP execution and guaranteed VWAP," Papers 1306.2832, arXiv.org, revised May 2014.
    6. Humphery-Jenner, Mark L., 2011. "Optimal VWAP trading under noisy conditions," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2319-2329, September.
    7. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    8. James McCulloch & Vladimir Kazakov, 2007. "Optimal VWAP Trading Strategy and Relative Volume," Research Paper Series 201, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Jedrzej Bialkowski & Serge Darolles & Gaëlle Le Fol, 2012. "Reducing the risk of VWAP orders execution - A new approach to modeling intra-day volume," Post-Print hal-01632822, HAL.
    10. Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
    11. Soohan Kim & Jimyeong Kim & Hong Kee Sul & Youngjoon Hong, 2023. "An Adaptive Dual-level Reinforcement Learning Approach for Optimal Trade Execution," Papers 2307.10649, arXiv.org.
    12. Bruno Bouchard & Ngoc-Minh Dang, 2013. "Generalized stochastic target problems for pricing and partial hedging under loss constraints—application in optimal book liquidation," Finance and Stochastics, Springer, vol. 17(1), pages 31-72, January.
    13. repec:bla:jfinan:v:43:y:1988:i:1:p:97-112 is not listed on IDEAS
    14. Xiaodong Li & Pangjing Wu & Chenxin Zou & Qing Li, 2022. "Hierarchical Deep Reinforcement Learning for VWAP Strategy Optimization," Papers 2212.14670, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Olivier Gu'eant & Guillaume Royer, 2013. "VWAP execution and guaranteed VWAP," Papers 1306.2832, arXiv.org, revised May 2014.
    3. Olivier Guéant & Royer Guillaume, 2014. "VWAP execution and guaranteed VWAP," Post-Print hal-01393121, HAL.
    4. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    5. Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.
    6. Serge Darolles & Gaëlle Le Fol, 2003. "Trading Volume and Arbitrage," Working Papers 2003-46, Center for Research in Economics and Statistics.
    7. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    8. Geir H. Bjønnes & Dagfinn Rime & Haakon O. Aa. Solheim, 2002. "Volume and Volatility in the FX-Market: Does it matter who you are?," CESifo Working Paper Series 786, CESifo.
    9. Jedrzej Bialkowski & Serge Darolles & Gaëlle Le Fol, 2005. "Decomposing Volume for VWAP Strategies," Working Papers 2005-16, Center for Research in Economics and Statistics.
    10. Victor Olkhov, 2021. "Three Remarks On Asset Pricing," Papers 2105.13903, arXiv.org, revised Jan 2024.
    11. Slim, Skander & Dahmene, Meriam, 2016. "Asymmetric information, volatility components and the volume–volatility relationship for the CAC40 stocks," Global Finance Journal, Elsevier, vol. 29(C), pages 70-84.
    12. Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
    13. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    14. Doojin RYU & Hyein SHIM, 2017. "Intraday Dynamics of Asset Returns, Trading Activities, and Implied Volatilities: A Trivariate GARCH Framework," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 45-61, June.
    15. Wang, Junbo & Wu, Chunchi, 2015. "Liquidity, credit quality, and the relation between volatility and trading activity: Evidence from the corporate bond market," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 183-203.
    16. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Enzo Busseti & Stephen Boyd, 2015. "Volume Weighted Average Price Optimal Execution," Papers 1509.08503, arXiv.org.
    18. Haugom, Erik & Ray, Rina, 2017. "Heterogeneous traders, liquidity, and volatility in crude oil futures market," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 36-49.
    19. Kumar, Brajesh & Singh, Priyanka & Pandey, Ajay, 2009. "The Dynamic Relationship between Price and Trading Volume:Evidence from Indian Stock Market," IIMA Working Papers WP2009-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Shahzad, Hassan & Duong, Huu Nhan & Kalev, Petko S. & Singh, Harminder, 2014. "Trading volume, realized volatility and jumps in the Australian stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 414-430.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.13722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.