IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.11310.html
   My bibliography  Save this paper

Generalized Factor Neural Network Model for High-dimensional Regression

Author

Listed:
  • Zichuan Guo
  • Mihai Cucuringu
  • Alexander Y. Shestopaloff

Abstract

We tackle the challenges of modeling high-dimensional data sets, particularly those with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships. Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression. Our approach introduces PCA and Soft PCA layers, which can be embedded at any stage of a neural network architecture, allowing the model to alternate between factor modeling and non-linear transformations. This flexibility makes our method especially effective for processing hierarchical compositional data. We explore ours and other techniques for imposing low-rank structures on neural networks and examine how architectural design impacts model performance. The effectiveness of our method is demonstrated through simulation studies, as well as applications to forecasting future price movements of equity ETF indices and nowcasting with macroeconomic data.

Suggested Citation

  • Zichuan Guo & Mihai Cucuringu & Alexander Y. Shestopaloff, 2025. "Generalized Factor Neural Network Model for High-dimensional Regression," Papers 2502.11310, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2502.11310
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.11310
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    2. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    3. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    4. Boot, Tom & Nibbering, Didier, 2019. "Forecasting using random subspace methods," Journal of Econometrics, Elsevier, vol. 209(2), pages 391-406.
    5. Wim Krijnen, 2002. "On the construction of all factors of the model for factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 161-172, March.
    6. Magnus, Jan R., 1985. "On Differentiating Eigenvalues and Eigenvectors," Econometric Theory, Cambridge University Press, vol. 1(2), pages 179-191, August.
    7. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    8. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    9. Bernard, Vl & Thomas, Jk, 1989. "Post-Earnings-Announcement Drift - Delayed Price Response Or Risk Premium," Journal of Accounting Research, Wiley Blackwell, vol. 27, pages 1-36.
    10. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    11. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    12. Jianqing Fan & Yuan Liao, 2022. "Learning Latent Factors From Diversified Projections and Its Applications to Over-Estimated and Weak Factors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 909-924, April.
    13. Bryan Kelly & Semyon Malamud & Kangying Zhou, 2024. "The Virtue of Complexity in Return Prediction," Journal of Finance, American Finance Association, vol. 79(1), pages 459-503, February.
    14. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Rubio, 2005. "Estrategias Cuantitativas De Valor Y Retornos Por Accion De Largo," Finance 0503029, University Library of Munich, Germany.
    2. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    3. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    4. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    5. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    6. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    7. Vu Le Tran & Guillaume Coqueret, 2023. "ESG news spillovers across the value chain," Post-Print hal-04325746, HAL.
    8. Khan, Mozaffar, 2008. "Are accruals mispriced Evidence from tests of an Intertemporal Capital Asset Pricing Model," Journal of Accounting and Economics, Elsevier, vol. 45(1), pages 55-77, March.
    9. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    10. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    11. Zhu, Lin & Jiang, Fuwei & Tang, Guohao & Jin, Fujing, 2024. "From macro to micro: Sparse macroeconomic risks and the cross-section of stock returns," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    12. Dunbar, Kwamie, 2021. "Pricing the hedging factor in the cross-section of stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    13. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    14. Zura Kakushadze, 2014. "4-Factor Model for Overnight Returns," Papers 1410.5513, arXiv.org, revised Jun 2015.
    15. Wei, Xin & Liu, Xi & Zhang, Xueyong, 2022. "Shadow banking and the cross-section of stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    16. Cohen, Lauren & Diether, Karl & Malloy, Christopher, 2013. "Legislating stock prices," Journal of Financial Economics, Elsevier, vol. 110(3), pages 574-595.
    17. Eckbo, B. Espen & Norli, Oyvind, 2005. "Liquidity risk, leverage and long-run IPO returns," Journal of Corporate Finance, Elsevier, vol. 11(1-2), pages 1-35, March.
    18. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    19. Mark Wong & Adrian Wai Kong Cheung & Wei Hu, 2021. "When two anomalies meet: Volume and timing effects on earnings announcements," The Financial Review, Eastern Finance Association, vol. 56(2), pages 355-380, May.
    20. Roberto Casarin & Andrea Piva & Loriana Pelizzon, 2008. "Italian Equity Funds: Efficiency and Performance Persistence," The IUP Journal of Financial Economics, IUP Publications, vol. 0(1), pages 7-28, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.11310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.