IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.10301.html
   My bibliography  Save this paper

Residualised Treatment Intensity and the Estimation of Average Partial Effects

Author

Listed:
  • Julius Schaper

Abstract

This paper introduces R-OLS, an estimator for the average partial effect (APE) of a continuous treatment variable on an outcome variable in the presence of non-linear and non-additively separable confounding of unknown form. Identification of the APE is achieved by generalising Stein's Lemma (Stein, 1981), leveraging an exogenous error component in the treatment along with a flexible functional relationship between the treatment and the confounders. The identification results for R-OLS are used to characterize the properties of Double/Debiased Machine Learning (Chernozhukov et al., 2018), specifying the conditions under which the APE is estimated consistently. A novel decomposition of the ordinary least squares estimand provides intuition for these results. Monte Carlo simulations demonstrate that the proposed estimator outperforms existing methods, delivering accurate estimates of the true APE and exhibiting robustness to moderate violations of its underlying assumptions. The methodology is further illustrated through an empirical application to Fetzer (2019).

Suggested Citation

  • Julius Schaper, 2025. "Residualised Treatment Intensity and the Estimation of Average Partial Effects," Papers 2502.10301, arXiv.org.
  • Handle: RePEc:arx:papers:2502.10301
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.10301
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Thiemo Fetzer, 2019. "Did Austerity Cause Brexit?," American Economic Review, American Economic Association, vol. 109(11), pages 3849-3886, November.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2024. "Dynamic Causal Effects in a Nonlinear World: the Good, the Bad, and the Ugly," Papers 2411.10415, arXiv.org, revised Dec 2024.
    5. Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2024. "Contamination Bias in Linear Regressions," American Economic Review, American Economic Association, vol. 114(12), pages 4015-4051, December.
    6. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    7. Joshua D. Angrist, 1998. "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants," Econometrica, Econometric Society, vol. 66(2), pages 249-288, March.
    8. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    9. José Ignacio Cuesta & Jonathan M. V. Davis & Andrew Gianou & Alejandro Hoyos, 2019. "Identification of average marginal effects under misspecification when covariates are normal," Econometric Reviews, Taylor & Francis Journals, vol. 38(3), pages 350-357, March.
    10. Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects," Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
    11. Yitzhaki, Shlomo, 1996. "On Using Linear Regressions in Welfare Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 478-486, October.
    12. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    2. Rainer Winkelmann, 2023. "Neglected heterogeneity, Simpson’s paradox, and the anatomy of least squares," ECON - Working Papers 426, Department of Economics - University of Zurich, revised Jul 2023.
    3. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    4. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org, revised Feb 2025.
    5. Michael C. Knaus, 2024. "Treatment Effect Estimators as Weighted Outcomes," Papers 2411.11559, arXiv.org, revised Dec 2024.
    6. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
    8. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    9. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    10. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    11. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    12. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    13. Nishiyama, Y., 2004. "Minimum normal approximation error bandwidth selection for averaged derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 53-61.
    14. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    15. Newham, Melissa & Valente, Marica, 2024. "The cost of influence: How gifts to physicians shape prescriptions and drug costs," Journal of Health Economics, Elsevier, vol. 95(C).
    16. Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.
    17. Winkelmann Rainer, 2024. "Neglected Heterogeneity, Simpson’s Paradox, and the Anatomy of Least Squares," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 131-144, January.
    18. Jiti Gao & Hua Liang, 1997. "Statistical Inference in Single-Index and Partially Nonlinear Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 493-517, September.
    19. Alvarez, Luis A.F. & Toneto, Rodrigo, 2024. "The interpretation of 2SLS with a continuous instrument: A weighted LATE representation," Economics Letters, Elsevier, vol. 237(C).
    20. Takahiro ITO, 2024. "Binary and Ordered Response Models in Randomized Experiments: Applications of the Resampling-Based Maximum Likelihood Method," GSICS Working Paper Series 42, Graduate School of International Cooperation Studies, Kobe University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.10301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.