IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.17973.html
   My bibliography  Save this paper

Universal Inference for Incomplete Discrete Choice Models

Author

Listed:
  • Hiroaki Kaido
  • Yi Zhang

Abstract

A growing number of empirical models exhibit set-valued predictions. This paper develops a tractable inference method with finite-sample validity for such models. The proposed procedure uses a robust version of the universal inference framework by Wasserman et al. (2020) and avoids using moment selection tuning parameters, resampling, or simulations. The method is designed for constructing confidence intervals for counterfactual objects and other functionals of the underlying parameter. It can be used in applications that involve model incompleteness, discrete and continuous covariates, and parameters containing nuisance components.

Suggested Citation

  • Hiroaki Kaido & Yi Zhang, 2025. "Universal Inference for Incomplete Discrete Choice Models," Papers 2501.17973, arXiv.org.
  • Handle: RePEc:arx:papers:2501.17973
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.17973
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," Econometrica, Econometric Society, vol. 83, pages 771-811, March.
    2. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    3. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    4. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    5. Elie Tamer, 2003. "Incomplete Simultaneous Discrete Response Model with Multiple Equilibria," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 147-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    2. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    3. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    4. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    5. Rosen, Adam M., 2012. "Set identification via quantile restrictions in short panels," Journal of Econometrics, Elsevier, vol. 166(1), pages 127-137.
    6. Bo E Honoré & Áureo de Paula, 2021. "Identification in simple binary outcome panel data models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 78-93.
    7. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    8. Andrew Chesher & Adam Rosen & Yuanqi Zhang, 2024. "Robust analysis of short panels," CeMMAP working papers 01/24, Institute for Fiscal Studies.
    9. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    10. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Taisuke Otsu & Martin Pesendorfer & Yuya Sasaki & Yuya Takahashi, 2022. "Estimation Of (Static Or Dynamic) Games Under Equilibrium Multiplicity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1165-1188, August.
    12. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    13. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    14. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    15. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    16. Galichon, Alfred & Henry, Marc, 2013. "Dilation bootstrap," Journal of Econometrics, Elsevier, vol. 177(1), pages 109-115.
    17. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers CWP16/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    19. Bo E. Honoré & Luojia Hu & Ekaterini Kyriazidou & Martin Weidner, 2023. "Simultaneity in binary outcome models with an application to employment for couples," Empirical Economics, Springer, vol. 64(6), pages 3197-3233, June.
    20. Aradillas-López, Andrés & Rosen, Adam M., 2022. "Inference in ordered response games with complete information," Journal of Econometrics, Elsevier, vol. 226(2), pages 451-476.
    21. Shinya Sugawara & Yasuhiro Omori, 2017. "An Econometric Analysis of Insurance Markets with Separate Identification for Moral Hazard and Selection Problems," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 473-502, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.17973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.