IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.07580.html
   My bibliography  Save this paper

Assets Forecasting with Feature Engineering and Transformation Methods for LightGBM

Author

Listed:
  • Konstantinos-Leonidas Bisdoulis

Abstract

Fluctuations in the stock market rapidly shape the economic world and consumer markets, impacting millions of individuals. Hence, accurately forecasting it is essential for mitigating risks, including those associated with inactivity. Although research shows that hybrid models of Deep Learning (DL) and Machine Learning (ML) yield promising results, their computational requirements often exceed the capabilities of average personal computers, rendering them inaccessible to many. In order to address this challenge in this paper we optimize LightGBM (an efficient implementation of gradient-boosted decision trees (GBDT)) for maximum performance, while maintaining low computational requirements. We introduce novel feature engineering techniques including indicator-price slope ratios and differences of close and open prices divided by the corresponding 14-period Exponential Moving Average (EMA), designed to capture market dynamics and enhance predictive accuracy. Additionally, we test seven different feature and target variable transformation methods, including returns, logarithmic returns, EMA ratios and their standardized counterparts as well as EMA difference ratios, so as to identify the most effective ones weighing in both efficiency and accuracy. The results demonstrate Log Returns, Returns and EMA Difference Ratio constitute the best target variable transformation methods, with EMA ratios having a lower percentage of correct directional forecasts, and standardized versions of target variable transformations requiring significantly more training time. Moreover, the introduced features demonstrate high feature importance in predictive performance across all target variable transformation methods. This study highlights an accessible, computationally efficient approach to stock market forecasting using LightGBM, making advanced forecasting techniques more widely attainable.

Suggested Citation

  • Konstantinos-Leonidas Bisdoulis, 2024. "Assets Forecasting with Feature Engineering and Transformation Methods for LightGBM," Papers 2501.07580, arXiv.org.
  • Handle: RePEc:arx:papers:2501.07580
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.07580
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    2. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    3. Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
    2. Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    3. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    4. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    5. Sid Ghoshal & Stephen Roberts, 2016. "Extracting Predictive Information from Heterogeneous Data Streams using Gaussian Processes," Papers 1603.06202, arXiv.org, revised Jul 2018.
    6. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    7. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    8. Bohm, Volker & Wenzelburger, Jan, 2005. "On the performance of efficient portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 721-740, April.
    9. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    10. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    11. Trifan, Emanuela, 2004. "Entscheidungsregeln und ihr Einfluss auf den Aktienkurs," Darmstadt Discussion Papers in Economics 131, Darmstadt University of Technology, Department of Law and Economics.
    12. Göncü, Ahmet & Kuzubaş, Tolga U. & Saltoğlu, Burak, 2024. "Predicting oil prices: A comparative analysis of machine learning and image recognition algorithms for trend prediction," Finance Research Letters, Elsevier, vol. 67(PB).
    13. Kun Xing & Honggang Li, 2024. "The profitability of interacting trading strategies from an ecological perspective," Annals of Finance, Springer, vol. 20(3), pages 377-394, September.
    14. Erdemlioglu, Deniz & Petitjean, Mikael & Vargas, Nicolas, 2021. "Market instability and technical trading at high frequency: Evidence from NASDAQ stocks," Economic Modelling, Elsevier, vol. 102(C).
    15. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    16. Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
    17. Yanbo Zhang & Mengkun Liang & Haiying Ou, 2024. "Prediction of Precious Metal Index Based on Ensemble Learning and SHAP Interpretable Method," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3243-3278, December.
    18. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    19. Fischer, Thomas & Riedler, Jesper, 2014. "Prices, debt and market structure in an agent-based model of the financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 95-120.
    20. Sid Ghoshal & Stephen J. Roberts, 2018. "Thresholded ConvNet Ensembles: Neural Networks for Technical Forecasting," Papers 1807.03192, arXiv.org, revised Jul 2018.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.07580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.