IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.02327.html
   My bibliography  Save this paper

Finite Element Method for HJB in Option Pricing with Stock Borrowing Fees

Author

Listed:
  • Rakhymzhan Kazbek
  • Aidana Abdukarimova

Abstract

In mathematical finance, many derivatives from markets with frictions can be formulated as optimal control problems in the HJB framework. Analytical optimal control can result in highly nonlinear PDEs, which might yield unstable numerical results. Accurate and convergent numerical schemes are essential to leverage the benefits of the hedging process. In this study, we apply a finite element approach with a non-uniform mesh for the task of option pricing with stock borrowing fees, leading to an HJB equation that bypasses analytical optimal control in favor of direct PDE discretization. The time integration employs the theta-scheme, with initial modifications following Rannacher`s procedure. A Newton-type algorithm is applied to address the penalty-like term at each time step. Numerical experiments are conducted, demonstrating consistency with a benchmark problem and showing a strong match. The CPU time needed to reach the desired results favors P2-FEM over FDM and linear P1-FEM, with P2-FEM displaying superior convergence. This paper presents an efficient alternative framework for the HJB problem and contributes to the literature by introducing a finite element method (FEM)-based solution for HJB applications in mathematical finance.

Suggested Citation

  • Rakhymzhan Kazbek & Aidana Abdukarimova, 2025. "Finite Element Method for HJB in Option Pricing with Stock Borrowing Fees," Papers 2501.02327, arXiv.org.
  • Handle: RePEc:arx:papers:2501.02327
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.02327
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.02327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.