IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.19754.html
   My bibliography  Save this paper

Complement or substitute? How AI increases the demand for human skills

Author

Listed:
  • Elina Makela
  • Fabian Stephany

Abstract

The question of whether AI substitutes or complements human work is central to debates on the future of work. This paper examines the impact of AI on skill demand and compensation in the U.S. economy, analysing 12 million online job vacancies from 2018 to 2023. It investigates internal effects (within-job substitution and complementation) and external effects (across occupations, industries, and regions). Our findings reveal a significant increase in demand for AI-complementary skills, such as digital literacy, teamwork, and resilience, alongside rising wage premiums for these skills in AI roles like Data Scientist. Conversely, substitute skills, including customer service and text review, have declined in both demand and value within AI-related positions. Examining external effects, we find a notable rise in demand for complementary skills in non-AI roles linked to the growth of AI-related jobs in specific industries or regions. At the same time, there is a moderate decline in non-AI roles requiring substitute skills. Overall, AI's complementary effect is up to 50% larger than its substitution effect, resulting in net positive demand for skills. These results, replicated for the UK and Australia, highlight AI's transformative impact on workforce skill requirements. They suggest reskilling efforts should prioritise not only technical AI skills but also complementary skills like ethics and digital literacy.

Suggested Citation

  • Elina Makela & Fabian Stephany, 2024. "Complement or substitute? How AI increases the demand for human skills," Papers 2412.19754, arXiv.org.
  • Handle: RePEc:arx:papers:2412.19754
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.19754
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.19754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.