Assessing the Impact of Technical Indicators on Machine Learning Models for Stock Price Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Robert J. Aumann & Roberto Serrano, 2008.
"An Economic Index of Riskiness,"
Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 810-836, October.
- Robert J. Aumann & Roberto Serrano, 2006. "An Economic Index of Riskiness," Working Papers 2006-20, Brown University, Department of Economics.
- Robert J. Aumann & Roberto Serrano, 2007. "An economic index of riskiness," Working Papers 2007-08, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
- Robert J. Aumann & Roberto Serrano, 2006. "An Economic Index of Riskiness," Levine's Bibliography 321307000000000585, UCLA Department of Economics.
- Robert J. Aumann & Roberto Serrano, 2007. "An Economic Index of Riskiness," Discussion Paper Series dp446, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
- Robert J. Aumann & Roberto Serrano, 2007. "An Economic Index of Riskiness," Levine's Bibliography 321307000000000836, UCLA Department of Economics.
- Robert J. Aumann & Roberto Serrano, 2007. "An Economic Index of Riskiness," Working Papers wp2007_0706, CEMFI.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
- Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- S. V. Stoyanov & S. T. Rachev & F. J. Fabozzi, 2007. "Optimal Financial Portfolios," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 401-436.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Pastor, Lubos & Stambaugh, Robert F., 2003.
"Liquidity Risk and Expected Stock Returns,"
Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
- Luboš Pástor & Robert F. Stambaugh, "undated". "Liquidity Risk and Expected Stock Returns," CRSP working papers 531, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
- Stambaugh, Robert F. & Pástor, Luboš, 2002. "Liquidity Risk and Expected Stock Returns," CEPR Discussion Papers 3494, C.E.P.R. Discussion Papers.
- Lubos Pastor & Robert F. Stambaugh, 2001. "Liquidity Risk and Expected Stock Returns," NBER Working Papers 8462, National Bureau of Economic Research, Inc.
- Ivan Letteri, 2023. "VolTS: A Volatility-based Trading System to forecast Stock Markets Trend using Statistics and Machine Learning," Papers 2307.13422, arXiv.org, revised Aug 2023.
- Xing Wang & Yijun Wang & Bin Weng & Aleksandr Vinel, 2020. "Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction with Representation Learning and Temporal Convolutional Network," Papers 2010.01197, arXiv.org.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zografopoulos, Lazaros & Iannino, Maria Chiara & Psaradellis, Ioannis & Sermpinis, Georgios, 2025. "Industry return prediction via interpretable deep learning," European Journal of Operational Research, Elsevier, vol. 321(1), pages 257-268.
- Haixiang Yao & Shenghao Xia & Hao Liu, 2024. "Return predictability via an long short‐term memory‐based cross‐section factor model: Evidence from Chinese stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1770-1794, September.
- Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023.
"The commodity risk premium and neural networks,"
Journal of Empirical Finance, Elsevier, vol. 74(C).
- Joelle Miffre & Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2023. "The commodity risk premium and neural networks," Post-Print hal-04322519, HAL.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Balbás, Beatriz & Balbás, Raquel, 2016. "Must an optimal buy and hold strategy contain any derivative?," IC3JM - Estudios = Working Papers 23912, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
- Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
- Adel Javanmard & Jingwei Ji & Renyuan Xu, 2024. "Multi-Task Dynamic Pricing in Credit Market with Contextual Information," Papers 2410.14839, arXiv.org, revised Oct 2024.
- Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
- DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
- Bolin Mao & Chenhui Chu & Yuta Nakashima & Hajime Nagahara, 2022. "Efficient Market Hypothesis Test with Stock Tweets and Natural Language Processing Models," KIER Working Papers 1082, Kyoto University, Institute of Economic Research.
- Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Sun, Chuting & Wu, Qi & Yan, Xing, 2024. "Dynamic CVaR portfolio construction with attention-powered generative factor learning," Journal of Economic Dynamics and Control, Elsevier, vol. 160(C).
- Avramov, Doron & Li, Minwen & Wang, Hao, 2021. "Predicting corporate policies using downside risk: A machine learning approach," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 1-26.
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Fengmin Xu & Jieao Ma, 2023. "Intelligent option portfolio model with perspective of shadow price and risk-free profit," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-01-27 (Big Data)
- NEP-CMP-2025-01-27 (Computational Economics)
- NEP-FMK-2025-01-27 (Financial Markets)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.15448. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.