IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.09631.html
   My bibliography  Save this paper

Limit Order Book Event Stream Prediction with Diffusion Model

Author

Listed:
  • Zetao Zheng
  • Guoan Li
  • Deqiang Ouyang
  • Decui Liang
  • Jie Shao

Abstract

Limit order book (LOB) is a dynamic, event-driven system that records real-time market demand and supply for a financial asset in a stream flow. Event stream prediction in LOB refers to forecasting both the timing and the type of events. The challenge lies in modeling the time-event distribution to capture the interdependence between time and event type, which has traditionally relied on stochastic point processes. However, modeling complex market dynamics using stochastic processes, e.g., Hawke stochastic process, can be simplistic and struggle to capture the evolution of market dynamics. In this study, we present LOBDIF (LOB event stream prediction with diffusion model), which offers a new paradigm for event stream prediction within the LOB system. LOBDIF learns the complex time-event distribution by leveraging a diffusion model, which decomposes the time-event distribution into sequential steps, with each step represented by a Gaussian distribution. Additionally, we propose a denoising network and a skip-step sampling strategy. The former facilitates effective learning of time-event interdependence, while the latter accelerates the sampling process during inference. By introducing a diffusion model, our approach breaks away from traditional modeling paradigms, offering novel insights and providing an effective and efficient solution for learning the time-event distribution in order streams within the LOB system. Extensive experiments using real-world data from the limit order books of three widely traded assets confirm that LOBDIF significantly outperforms current state-of-the-art methods.

Suggested Citation

  • Zetao Zheng & Guoan Li & Deqiang Ouyang & Decui Liang & Jie Shao, 2024. "Limit Order Book Event Stream Prediction with Diffusion Model," Papers 2412.09631, arXiv.org.
  • Handle: RePEc:arx:papers:2412.09631
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.09631
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toke, Ioane Muni & Pomponio, Fabrizio, 2012. "Modelling trades-through in a limit order book using hawkes processes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-23.
    2. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    3. Frank McGroarty & Ash Booth & Enrico Gerding & V. L. Raju Chinthalapati, 2019. "High frequency trading strategies, market fragility and price spikes: an agent based model perspective," Annals of Operations Research, Springer, vol. 282(1), pages 217-244, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    2. Zijian Shi & John Cartlidge, 2023. "Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid Methodology," Papers 2303.00080, arXiv.org.
    3. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    4. Chávez-Casillas, Jonathan A. & Figueroa-López, José E., 2017. "A one-level limit order book model with memory and variable spread," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2447-2481.
    5. Ioane Muni Toke, 2016. "Reconstruction of Order Flows using Aggregated Data," Post-Print hal-01705074, HAL.
    6. Haghighi, Afshin & Fallahpour, Saeid & Eyvazlu, Reza, 2016. "Modelling order arrivals at price limits using Hawkes processes," Finance Research Letters, Elsevier, vol. 19(C), pages 267-272.
    7. Bilodeau, Yann, 2020. "Deep limit order book events dynamics," Working Papers 20-4, HEC Montreal, Canada Research Chair in Risk Management.
    8. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    9. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    10. Michael Giegrich & Roel Oomen & Christoph Reisinger, 2024. "Limit Order Book Simulation and Trade Evaluation with $K$-Nearest-Neighbor Resampling," Papers 2409.06514, arXiv.org.
    11. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    12. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    13. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    14. Taiga Saito & Shivam Gupta, 2022. "Big Data Applications with Theoretical Models and Social Media in Financial Management," CIRJE F-Series CIRJE-F-1205, CIRJE, Faculty of Economics, University of Tokyo.
    15. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    16. Taiga Saito & Shivam Gupta, 2022. "Big data applications with theoretical models and social media in financial management," CARF F-Series CARF-F-550, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Neil Walton, 2022. "Queueing: a perennial theory," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 557-559, April.
    18. Jack Sarkissian, 2013. "Coupled mode theory of stock price formation," Papers 1312.4622, arXiv.org.
    19. Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
    20. A. Lykov & S. Muzychka & K. Vaninsky, 2012. "Investor's sentiment in multi-agent model of the continuous double auction," Papers 1208.3083, arXiv.org, revised Feb 2016.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.09631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.