IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.01030.html
   My bibliography  Save this paper

Iterative Distributed Multinomial Regression

Author

Listed:
  • Yanqin Fan
  • Yigit Okar
  • Xuetao Shi

Abstract

This article introduces an iterative distributed computing estimator for the multinomial logistic regression model with large choice sets. Compared to the maximum likelihood estimator, the proposed iterative distributed estimator achieves significantly faster computation and, when initialized with a consistent estimator, attains asymptotic efficiency under a weak dominance condition. Additionally, we propose a parametric bootstrap inference procedure based on the iterative distributed estimator and establish its consistency. Extensive simulation studies validate the effectiveness of the proposed methods and highlight the computational efficiency of the iterative distributed estimator.

Suggested Citation

  • Yanqin Fan & Yigit Okar & Xuetao Shi, 2024. "Iterative Distributed Multinomial Regression," Papers 2412.01030, arXiv.org.
  • Handle: RePEc:arx:papers:2412.01030
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.01030
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiroyuki Kasahara & Katsumi Shimotsu, 2012. "Sequential Estimation of Structural Models With a Fixed Point Constraint," Econometrica, Econometric Society, vol. 80(5), pages 2303-2319, September.
    2. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Dominitz, Jeff & Sherman, Robert P., 2005. "Some Convergence Theory For Iterative Estimation Procedures With An Application To Semiparametric Estimation," Econometric Theory, Cambridge University Press, vol. 21(4), pages 838-863, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguirregabiria, Victor & Ho, Chun-Yu, 2012. "A dynamic oligopoly game of the US airline industry: Estimation and policy experiments," Journal of Econometrics, Elsevier, vol. 168(1), pages 156-173.
    2. Marleen Marra, 2024. "Estimating and Auction Platform Game with Two-Sided Entry," Working Papers hal-03393068, HAL.
    3. repec:spo:wpecon:info:hdl:2441/5kht5rc22p99sq5tol4efe4ssb is not listed on IDEAS
    4. repec:hal:spmain:info:hdl:2441/5kht5rc22p99sq5tol4efe4ssb is not listed on IDEAS
    5. Blevins, Jason R. & Kim, Minhae, 2024. "Nested Pseudo likelihood estimation of continuous-time dynamic discrete games," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Sasaki, Yuya & Takahashi, Yuya & Xin, Yi & Hu, Yingyao, 2023. "Dynamic discrete choice models with incomplete data: Sharp identification," Journal of Econometrics, Elsevier, vol. 236(1).
    7. Jinhyuk Lee & Kyoungwon Seo, 2015. "A computationally fast estimator for random coefficients logit demand models using aggregate data," RAND Journal of Economics, RAND Corporation, vol. 46(1), pages 86-102, March.
    8. Victor Aguirregabiria & Victor Aguirregabiria & Aviv Nevo & Aviv Nevo, 2010. "Recent Developments in Empirical IO: Dynamic Demand and Dynamic Games," Working Papers tecipa-419, University of Toronto, Department of Economics.
    9. Taisuke Otsu & Martin Pesendorfer, 2021. "Equilibrium multiplicity in dynamic games: testing and estimation," STICERD - Econometrics Paper Series 618, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Christopher Ferrall, 2023. "Object Oriented (Dynamic) Programming: Closing the “Structural” Estimation Coding Gap," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 761-816, October.
    11. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    12. repec:hal:wpspec:info:hdl:2441/5kht5rc22p99sq5tol4efe4ssb is not listed on IDEAS
    13. Yingyao Hu & Zhongjian Lin, 2018. "Misclassification and the hidden silent rivalry," CeMMAP working papers CWP12/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Victor Aguirregabiria & Mathieu Marcoux, 2021. "Imposing equilibrium restrictions in the estimation of dynamic discrete games," Quantitative Economics, Econometric Society, vol. 12(4), pages 1223-1271, November.
    15. Adam Dearing & Jason R. Blevins, 2019. "Efficient and Convergent Sequential Pseudo-Likelihood Estimation of Dynamic Discrete Games," Papers 1912.10488, arXiv.org, revised Apr 2024.
    16. Christopher Ferrall, 2020. "Object Oriented (Dynamic) Programming: Replication, Innovation and "Structural" Estimation," Working Paper 1432, Economics Department, Queen's University.
    17. Fabio A. Miessi Sanches & Daniel Silva Junior, Sorawoot Srisuma, 2014. "Ordinary Least Squares Estimation for a Dynamic Game," Working Papers, Department of Economics 2014_19, University of São Paulo (FEA-USP), revised 23 Feb 2015.
    18. repec:spo:wpmain:info:hdl:2441/5kht5rc22p99sq5tol4efe4ssb is not listed on IDEAS
    19. Otero, Karina V., 2016. "Nonparametric identification of dynamic multinomial choice games: unknown payoffs and shocks without interchangeability," MPRA Paper 86784, University Library of Munich, Germany.
    20. Taisuke Otsu & Martin Pesendorfer, 2023. "Equilibrium multiplicity in dynamic games: Testing and estimation," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 26-42.
    21. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    22. Victor Aguirregabiria, 2006. "Another Look at the Identification of Dynamic Discrete Decision Processes: With an Application to Retirement Behavior," 2006 Meeting Papers 169, Society for Economic Dynamics.
    23. Maria Casanova-Rivas, 2008. "Dynamic Complementarities: A Computational and Empirical Analysis of Couples' Retirement Decisions," 2008 Meeting Papers 1073, Society for Economic Dynamics.
    24. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.01030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.