IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.17542.html
   My bibliography  Save this paper

Causal Inference in Finance: An Expertise-Driven Model for Instrument Variables Identification and Interpretation

Author

Listed:
  • Ying Chen
  • Ziwei Xu
  • Kotaro Inoue
  • Ryutaro Ichise

Abstract

Instrumental Variable (IV) provides a source of treatment randomization that is conditionally independent of the outcomes, responding to the challenges of counterfactual and confounding biases. In finance, IV construction typically relies on pre-designed synthetic IVs, with effectiveness measured by specific algorithms. This classic paradigm cannot be generalized to address broader issues that require more and specific IVs. Therefore, we propose an expertise-driven model (ETE-FinCa) to optimize the source of expertise, instantiate IVs by the expertise concept, and interpret the cause-effect relationship by integrating concept with real economic data. The results show that the feature selection based on causal knowledge graphs improves the classification performance than others, with up to a 11.7% increase in accuracy and a 23.0% increase in F1-score. Furthermore, the high-quality IVs we defined can identify causal relationships between the treatment and outcome variables in the Two-Stage Least Squares Regression model with statistical significance.

Suggested Citation

  • Ying Chen & Ziwei Xu & Kotaro Inoue & Ryutaro Ichise, 2024. "Causal Inference in Finance: An Expertise-Driven Model for Instrument Variables Identification and Interpretation," Papers 2411.17542, arXiv.org.
  • Handle: RePEc:arx:papers:2411.17542
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.17542
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    3. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    4. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    5. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    6. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    7. Ashesh Rambachan & Rahul Singh & Davide Viviano, 2024. "Program Evaluation with Remotely Sensed Outcomes," Papers 2411.10959, arXiv.org.
    8. Bubb, Ryan & Kaufman, Alex, 2014. "Securitization and moral hazard: Evidence from credit score cutoff rules," Journal of Monetary Economics, Elsevier, vol. 63(C), pages 1-18.
    9. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    10. Peter B. Gilbert & Ronald J. Bosch & Michael G. Hudgens, 2003. "Sensitivity Analysis for the Assessment of Causal Vaccine Effects on Viral Load in HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 531-541, September.
    11. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    12. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.
    13. Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
    14. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    16. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    17. Jincheng Zhou & James S. Hodges & Haitao Chu, 2020. "Rejoinder to “CACE and meta‐analysis (letter to the editor)” by Stuart Baker," Biometrics, The International Biometric Society, vol. 76(4), pages 1385-1389, December.
    18. Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
    19. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    20. Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020. "Wage premium of Communist Party membership: Evidence from China," Pacific Economic Review, Wiley Blackwell, vol. 25(3), pages 309-338, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.17542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.