IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.17353.html
   My bibliography  Save this paper

Joint Combinatorial Node Selection and Resource Allocations in the Lightning Network using Attention-based Reinforcement Learning

Author

Listed:
  • Mahdi Salahshour
  • Amirahmad Shafiee
  • Mojtaba Tefagh

Abstract

The Lightning Network (LN) has emerged as a second-layer solution to Bitcoin's scalability challenges. The rise of Payment Channel Networks (PCNs) and their specific mechanisms incentivize individuals to join the network for profit-making opportunities. According to the latest statistics, the total value locked within the Lightning Network is approximately \$500 million. Meanwhile, joining the LN with the profit-making incentives presents several obstacles, as it involves solving a complex combinatorial problem that encompasses both discrete and continuous control variables related to node selection and resource allocation, respectively. Current research inadequately captures the critical role of resource allocation and lacks realistic simulations of the LN routing mechanism. In this paper, we propose a Deep Reinforcement Learning (DRL) framework, enhanced by the power of transformers, to address the Joint Combinatorial Node Selection and Resource Allocation (JCNSRA) problem. We have improved upon an existing environment by introducing modules that enhance its routing mechanism, thereby narrowing the gap with the actual LN routing system and ensuring compatibility with the JCNSRA problem. We compare our model against several baselines and heuristics, demonstrating its superior performance across various settings. Additionally, we address concerns regarding centralization in the LN by deploying our agent within the network and monitoring the centrality measures of the evolved graph. Our findings suggest not only an absence of conflict between LN's decentralization goals and individuals' revenue-maximization incentives but also a positive association between the two.

Suggested Citation

  • Mahdi Salahshour & Amirahmad Shafiee & Mojtaba Tefagh, 2024. "Joint Combinatorial Node Selection and Resource Allocations in the Lightning Network using Attention-based Reinforcement Learning," Papers 2411.17353, arXiv.org.
  • Handle: RePEc:arx:papers:2411.17353
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.17353
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zabka, Philipp & Förster, Klaus-T. & Decker, Christian & Schmid, Stefan, 2024. "A centrality analysis of the Lightning Network," Telecommunications Policy, Elsevier, vol. 48(2).
    2. Stefano Martinazzi & Andrea Flori, 2020. "The evolving topology of the Lightning Network: Centralization, efficiency, robustness, synchronization, and anonymity," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Divakaruni, Anantha & Zimmerman, Peter, 2023. "The Lightning Network: Turning Bitcoin into money," Finance Research Letters, Elsevier, vol. 52(C).
    2. Zabka, Philipp & Förster, Klaus-T. & Decker, Christian & Schmid, Stefan, 2024. "A centrality analysis of the Lightning Network," Telecommunications Policy, Elsevier, vol. 48(2).
    3. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    4. Kiana Asgari & Aida Afshar Mohammadian & Mojtaba Tefagh, 2022. "DyFEn: Agent-Based Fee Setting in Payment Channel Networks," Papers 2210.08197, arXiv.org.
    5. Lin, Jian-Hong & Marchese, Emiliano & Tessone, Claudio J. & Squartini, Tiziano, 2022. "The weighted Bitcoin Lightning Network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Chu, Meifen, 2021. "Bitcoin and traditional currencies during the Covid-19 pandemic period," MPRA Paper 110117, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.17353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.