IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.15712.html
   My bibliography  Save this paper

Research on Optimal Portfolio Based on Multifractal Features

Author

Listed:
  • Yong Li

Abstract

Providing optimal portfolio selection for investors has always been one of the hot topics in academia. In view of the traditional portfolio model could not adapt to the actual capital market and can provide erroneous results. This paper innovatively constructs a mean-detrended cross-correlation portfolio model (M-DCCP model), This model is designed to embed detrended cross-correlation between different simultaneously recorded time series in the presence of nonstationary into the reward-risk criterion. We illustrate the model's effectiveness by selected five composite indexes (SSE 50, CSI 300, SSE 500, CSI 1000 and CSI 2000) in China A-share market. The empirical results show that compared with traditional mean-variance portfolio model (M-VP model), the M-DCCP model is more conducive for investors to construct optimal portfolios under the different fluctuation exponent preference and time scales preference, so as to improve portfolio's performance.

Suggested Citation

  • Yong Li, 2024. "Research on Optimal Portfolio Based on Multifractal Features," Papers 2411.15712, arXiv.org.
  • Handle: RePEc:arx:papers:2411.15712
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.15712
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    2. Yusif Simaan, 1997. "Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model," Management Science, INFORMS, vol. 43(10), pages 1437-1446, October.
    3. Enrique Ballestero, 2005. "Mean-Semivariance Efficient Frontier: A Downside Risk Model for Portfolio Selection," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 1-15.
    4. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Rung Yu & Wan-Jiun Paul Chiou & Jian-Hong Yang, 2017. "Diversification benefits of risk portfolio models: a case of Taiwan’s stock market," Review of Quantitative Finance and Accounting, Springer, vol. 48(2), pages 467-502, February.
    2. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    3. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    4. Gotoh, Jun-ya & Takeda, Akiko, 2012. "Minimizing loss probability bounds for portfolio selection," European Journal of Operational Research, Elsevier, vol. 217(2), pages 371-380.
    5. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    6. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    7. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    8. Li, Bo & Zhang, Ranran, 2021. "A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Lin, Chang-Chun, 2009. "Comments on "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem"," European Journal of Operational Research, Elsevier, vol. 194(1), pages 339-341, April.
    10. Felici, Marco & Kenny, Geoff & Friz, Roberta, 2023. "Consumer savings behaviour at low and negative interest rates," European Economic Review, Elsevier, vol. 157(C).
    11. Fouad Ben Abdelaziz & Ray Saadaoui Mallek, 2018. "Multi-criteria optimal stopping methods applied to the portfolio optimisation problem," Annals of Operations Research, Springer, vol. 267(1), pages 29-46, August.
    12. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    13. Xueting Cui & Xiaoling Sun & Shushang Zhu & Rujun Jiang & Duan Li, 2018. "Portfolio Optimization with Nonparametric Value at Risk: A Block Coordinate Descent Method," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 454-471, August.
    14. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    15. Sabastine Mushori & Delson Chikobvu, 2016. "A Stochastic Multi-stage Trading Cost model in optimal portfolio selection," EERI Research Paper Series EERI RP 2016/23, Economics and Econometrics Research Institute (EERI), Brussels.
    16. Duc Hong Vo, 2021. "Portfolio Optimization and Diversification in China: Policy Implications for Vietnam and Other Emerging Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(1), pages 223-238, January.
    17. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).
    18. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    19. Madlener, Reinhard & Glensk, Barbara & Weber, Veronika, 2011. "Fuzzy Portfolio Optimization of Onshore Wind Power Plants," FCN Working Papers 10/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jul 2014.
    20. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2015. "Informatics, Data Mining, Econometrics and Financial Economics: A Connection," Econometric Institute Research Papers EI2015-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.15712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.