IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.13381.html
   My bibliography  Save this paper

Simulating Liquidity: Agent-Based Modeling of Illiquid Markets for Fractional Ownership

Author

Listed:
  • Lars Fluri
  • A. Ege Yilmaz
  • Denis Bieri
  • Thomas Ankenbrand
  • Aurelio Perucca

Abstract

This research investigates liquidity dynamics in fractional ownership markets, focusing on illiquid alternative investments traded on a FinTech platform. By leveraging empirical data and employing agent-based modeling (ABM), the study simulates trading behaviors in sell offer-driven systems, providing a foundation for generating insights into how different market structures influence liquidity. The ABM-based simulation model provides a data augmentation environment which allows for the exploration of diverse trading architectures and rules, offering an alternative to direct experimentation. This approach bridges academic theory and practical application, supported by collaboration with industry and Swiss federal funding. The paper lays the foundation for planned extensions, including the identification of a liquidity-maximizing trading environment and the design of a market maker, by simulating the current functioning of the investment platform using an ABM specified with empirical data.

Suggested Citation

  • Lars Fluri & A. Ege Yilmaz & Denis Bieri & Thomas Ankenbrand & Aurelio Perucca, 2024. "Simulating Liquidity: Agent-Based Modeling of Illiquid Markets for Fractional Ownership," Papers 2411.13381, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2411.13381
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.13381
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean Tirole, 2011. "Illiquidity and All Its Friends," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 287-325, June.
    2. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    3. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    4. Jean-Philippe Bouchaud, 2008. "Economics needs a scientific revolution," Nature, Nature, vol. 455(7217), pages 1181-1181, October.
    5. B. LeBaron, 2001. "A builder's guide to agent-based financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 254-261.
    6. Michael J. Barclay, 2003. "Price Discovery and Trading After Hours," The Review of Financial Studies, Society for Financial Studies, vol. 16(4), pages 1041-1073.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    2. Shu-Heng Chen & Chung-Ching Tai, 2006. "On the Selection of Adaptive Algorithms in ABM: A Computational-Equivalence Approach," Computational Economics, Springer;Society for Computational Economics, vol. 28(1), pages 51-69, August.
    3. Gerard Ballot & Antoine Mandel & Annick Vignes, 2015. "Agent-based modeling and economic theory: where do we stand?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 199-220, October.
    4. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    5. Casari, Marco, 2008. "Markets in equilibrium with firms out of equilibrium: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 261-276, February.
    6. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    7. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    8. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    9. Alexandru Stan, 2015. "A Price Crash Alerting Strategy for Agent-based Artificial Financial Markets," MIC 2015: Managing Sustainable Growth; Proceedings of the Joint International Conference, Portorož, Slovenia, 28–30 May 2015,, University of Primorska, Faculty of Management Koper.
    10. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    11. Chia-Hsuan Yeh & Chun-Yi Yang, 2013. "Do price limits hurt the market?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 125-153, April.
    12. Noemi Schmitt & Ivonne Schwartz & Frank Westerhoff, 2022. "Heterogeneous speculators and stock market dynamics: a simple agent-based computational model," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1263-1282, October.
    13. Alexandru Mandes, 2014. "Order Placement in a Continuous Double Auction Agent Based Model," MAGKS Papers on Economics 201443, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    14. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    15. Colin M. Van Oort & Ethan Ratliff-Crain & Brian F. Tivnan & Safwan Wshah, 2023. "Adaptive Agents and Data Quality in Agent-Based Financial Markets," Papers 2311.15974, arXiv.org.
    16. Richard Bookstaber & Mark Paddrik, 2015. "An Agent-Based Model of Liquidity," Working Papers 15-18, Office of Financial Research, US Department of the Treasury.
    17. Kang Gao & Stephen Weston & Perukrishnen Vytelingum & Namid R. Stillman & Wayne Luk & Ce Guo, 2023. "Deeper Hedging: A New Agent-based Model for Effective Deep Hedging," Papers 2310.18755, arXiv.org.
    18. Alexandru Mandes & Peter Winker, 2017. "Complexity and model comparison in agent based modeling of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.
    19. Michiel Leur & Mikhail Anufriev, 2018. "Timing under individual evolutionary learning in a continuous double auction," Journal of Evolutionary Economics, Springer, vol. 28(3), pages 609-631, August.
    20. Shu-Heng Chen & Chung-Ching Tai, 2006. "Republication: On the Selection of Adaptive Algorithms in ABM: A Computational-Equivalence Approach," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 313-331, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.13381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.