IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.11589.html
   My bibliography  Save this paper

The Impact of the General Data Protection Regulation (GDPR) on Online Usage Behavior

Author

Listed:
  • Klaus M. Miller
  • Julia Schmitt
  • Bernd Skiera

Abstract

Privacy regulations often necessitate a balance between safeguarding consumer privacy and preventing economic losses for firms that utilize consumer data. However, little empirical evidence exists on how such laws affect firm performance. This study aims to fill that gap by quantifying the impact of the European Union's General Data Protection Regulation (GDPR) on online usage behavior over time. We analyzed data from 6,286 websites across 24 industries, covering 10 months before and 18 months after the GDPR's enactment in 2018. Employing a generalized synthetic control estimator, we isolated the short- and long-term effects of the GDPR on user behavior. Our results show that the GDPR negatively affected online usage per website on average; specifically, weekly visits decreased by 4.88% in the first 3 months and 10.02% after 18 months post-enactment. At the 18-month mark, these declines translated into average revenue losses of about USD 7 million for e-commerce websites and nearly USD 2.5 million for ad-based websites. Nonetheless, the GDPR's impact varied across website size, industry, and user origin, with some large websites and industries benefiting from the regulation. Notably, the largest 10% of websites pre-GDPR suffered less, suggesting that the GDPR has increased market concentration.

Suggested Citation

  • Klaus M. Miller & Julia Schmitt & Bernd Skiera, 2024. "The Impact of the General Data Protection Regulation (GDPR) on Online Usage Behavior," Papers 2411.11589, arXiv.org.
  • Handle: RePEc:arx:papers:2411.11589
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.11589
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    2. Garrett A. Johnson & Scott K. Shriver & Shaoyin Du, 2020. "Consumer Privacy Choice in Online Advertising: Who Opts Out and at What Cost to Industry?," Marketing Science, INFORMS, vol. 39(1), pages 33-51, January.
    3. Joan Calzada & Ricard Gil, 2020. "What Do News Aggregators Do? Evidence from Google News in Spain and Germany," Marketing Science, INFORMS, vol. 39(1), pages 134-167, January.
    4. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2011. "Synth: An R Package for Synthetic Control Methods in Comparative Case Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i13).
    5. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    6. Shijie Lu & Xin (Shane) Wang & Neil Bendle, 2020. "Does Piracy Create Online Word of Mouth? An Empirical Analysis in the Movie Industry," Management Science, INFORMS, vol. 66(5), pages 2140-2162, May.
    7. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    8. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    9. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    10. Christian Peukert & Stefan Bechtold & Michail Batikas & Tobias Kretschmer, 2022. "Regulatory Spillovers and Data Governance: Evidence from the GDPR," Marketing Science, INFORMS, vol. 41(4), pages 746-768, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Marcin Kobierecki & Michał Pierzgalski, 2022. "Sports Mega-Events and Economic Growth: A Synthetic Control Approach," Journal of Sports Economics, , vol. 23(5), pages 567-597, June.
    2. Pekka Malo & Juha Eskelinen & Xun Zhou & Timo Kuosmanen, 2024. "Computing Synthetic Controls Using Bilevel Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1113-1136, August.
    3. Kuosmanen, Timo & Zhou, Xun & Eskelinen, Juha & Malo, Pekka, 2021. "Design Flaw of the Synthetic Control Method," MPRA Paper 106328, University Library of Munich, Germany.
    4. Bai, Jushan & Wang, Peng, 2024. "Causal inference using factor models," MPRA Paper 120585, University Library of Munich, Germany.
    5. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    6. Bruno Ferman, 2021. "On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1764-1772, October.
    7. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    8. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    9. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2021. "Decoupling synthetic control methods to ensure stability, accuracy and meaningfulness," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 549-584, December.
    10. Taylor K. Odle, 2022. "Free to Spend? Institutional Autonomy and Expenditures on Executive Compensation, Faculty Salaries, and Research Activities," Research in Higher Education, Springer;Association for Institutional Research, vol. 63(1), pages 1-32, February.
    11. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    12. Kathleen T. Li, 2024. "Frontiers: A Simple Forward Difference-in-Differences Method," Marketing Science, INFORMS, vol. 43(2), pages 267-279, March.
    13. Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021. "The Augmented Synthetic Control Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1789-1803, October.
    14. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    15. Aderonke Osikominu & Gregor Pfeifer & Kristina Strohmaier & Gregor-Gabriel Pfeifer, 2021. "The Effects of Free Secondary School Track Choice: A Disaggregated Synthetic Control Approach," CESifo Working Paper Series 8879, CESifo.
    16. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
    18. Kang, Yicheng & Liao, Sha & Jiang, Changmin & D’Alfonso, Tiziana, 2022. "Synthetic control methods for policy analysis: Evaluating the effect of the European Emission Trading System on aviation supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 236-252.
    19. Vivek F. Farias & Andrew A. Li & Tianyi Peng, 2021. "Learning Treatment Effects in Panels with General Intervention Patterns," Papers 2106.02780, arXiv.org, revised Mar 2023.
    20. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.11589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.