IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.10584.html
   My bibliography  Save this paper

Social Learning in Lung Transplant Decision

Author

Listed:
  • Laura Doval
  • Federico Echenique Wanying Huang
  • Yi Xin

Abstract

We study the allocation of deceased-donor lungs to patients in need of a transplant. Patients make sequential decisions in an order dictated by a priority policy. Using data from a prominent Organ Procurement Organization in the United States, we provide reduced-form evidence of social learning: because patients accept or reject organs in sequence, their decisions exhibit herding behavior, often rejecting an organ that would otherwise be accepted. We develop and estimate a structural model to quantify the impact of various policy proposals and informational regimes. Our results show that blinding patients to their position in the sequence\textemdash thereby eliminating social learning\textemdash boosts organ allocation but reduces average utility per patient. In contrast, prioritizing patients by their likelihood of acceptance exacerbates social learning, leading to fewer organ allocations. Nevertheless, it raises utility per accepted organ and expedites the allocation process.

Suggested Citation

  • Laura Doval & Federico Echenique Wanying Huang & Yi Xin, 2024. "Social Learning in Lung Transplant Decision," Papers 2411.10584, arXiv.org.
  • Handle: RePEc:arx:papers:2411.10584
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.10584
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Mel, S. & Munshi, K. & Reiche, S. & Sabourian, H., 2020. "Herding in Quality Assessment: An Application to Organ Transplantation," Cambridge Working Papers in Economics 2052, Faculty of Economics, University of Cambridge.
    2. Stephanie de Mel & Kaivan Munshi & Soenje Reiche & Hamid Sabourian, 2020. "Herding in Quality Assessment: An Application to Organ Transplantation," IFS Working Papers W20/22, Institute for Fiscal Studies.
    3. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    4. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Chen & Guo, Xu & Zhang, Chengping, 2022. "Analyst target price revisions and institutional herding," International Review of Financial Analysis, Elsevier, vol. 82(C).
    2. Ruomeng Cui & Dennis J. Zhang & Achal Bassamboo, 2019. "Learning from Inventory Availability Information: Evidence from Field Experiments on Amazon," Management Science, INFORMS, vol. 65(3), pages 1216-1235, March.
    3. Jonas Hedlund & Carlos Oyarzun, 2018. "Imitation in heterogeneous populations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(4), pages 937-973, June.
    4. Cao, Melanie & Shi, Shouyong, 2006. "Signaling in the Internet craze of initial public offerings," Journal of Corporate Finance, Elsevier, vol. 12(4), pages 818-833, September.
    5. Wei He & Qian Wang, 2020. "The peer effect of corporate financial decisions around split share structure reform in China," Review of Financial Economics, John Wiley & Sons, vol. 38(3), pages 474-493, July.
    6. Kraemer, Carlo & Noth, Markus & Weber, Martin, 2006. "Information aggregation with costly information and random ordering: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 59(3), pages 423-432, March.
    7. Fishman, Arthur & Fishman, Ram & Gneezy, Uri, 2019. "A tale of two food stands: Observational learning in the field," Journal of Economic Behavior & Organization, Elsevier, vol. 159(C), pages 101-108.
    8. Cavatorta, Elisa & Guarino, Antonio & Huck, Steffen, 2024. "Social learning with partial and aggregate information: Experimental evidence," Games and Economic Behavior, Elsevier, vol. 146(C), pages 292-307.
    9. Jacob K. Goeree & Leeat Yariv, 2015. "Conformity in the lab," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 1(1), pages 15-28, July.
    10. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    11. Boğaçhan Çelen & Kyle Hyndman, 2012. "An experiment of social learning with endogenous timing," Review of Economic Design, Springer;Society for Economic Design, vol. 16(2), pages 251-268, September.
    12. Bohl, Martin T. & Branger, Nicole & Trede, Mark, 2017. "The case for herding is stronger than you think," Journal of Banking & Finance, Elsevier, vol. 85(C), pages 30-40.
    13. Ennis, Huberto M. & Keister, Todd, 2005. "Government policy and the probability of coordination failures," European Economic Review, Elsevier, vol. 49(4), pages 939-973, May.
    14. D'Arcangelis, Anna Maria & Rotundo, Giulia, 2021. "Herding in mutual funds: A complex network approach," Journal of Business Research, Elsevier, vol. 129(C), pages 679-686.
    15. SHIMAMOTO Daichi & Yu Ri KIM & TODO Yasuyuki, 2019. "The Effect of Social Interactions on Exporting Activities: Evidence from Micro, Small, and Medium-Sized Enterprises in rural Vietnam," Discussion papers 19020, Research Institute of Economy, Trade and Industry (RIETI).
    16. G. Rejikumar & Aswathy Asokan-Ajitha & Sofi Dinesh & Ajay Jose, 2022. "The role of cognitive complexity and risk aversion in online herd behavior," Electronic Commerce Research, Springer, vol. 22(2), pages 585-621, June.
    17. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," Working Papers halshs-03735680, HAL.
    18. George Kapetanios & James Mitchell & Yongcheol Shin, 2010. "A Nonlinear Panel Model of Cross-sectional Dependence," Working Papers 673, Queen Mary University of London, School of Economics and Finance.
    19. Wang, Peiwen & Chen, Minghua & Wu, Ji & Yan, Yuanyun, 2023. "Do peer effects matter in bank risk? Some cross-country evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    20. Philipp Kircher & Andrew Postlewaite, 2008. "Strategic Firms and Endogenous Consumer Emulation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(2), pages 621-661.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.10584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.