IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.05257.html
   My bibliography  Save this paper

Enforcing asymptotic behavior with DNNs for approximation and regression in finance

Author

Listed:
  • Hardik Routray
  • Bernhard Hientzsch

Abstract

We propose a simple methodology to approximate functions with given asymptotic behavior by specifically constructed terms and an unconstrained deep neural network (DNN). The methodology we describe extends to various asymptotic behaviors and multiple dimensions and is easy to implement. In this work we demonstrate it for linear asymptotic behavior in one-dimensional examples. We apply it to function approximation and regression problems where we measure approximation of only function values (``Vanilla Machine Learning''-VML) or also approximation of function and derivative values (``Differential Machine Learning''-DML) on several examples. We see that enforcing given asymptotic behavior leads to better approximation and faster convergence.

Suggested Citation

  • Hardik Routray & Bernhard Hientzsch, 2024. "Enforcing asymptotic behavior with DNNs for approximation and regression in finance," Papers 2411.05257, arXiv.org.
  • Handle: RePEc:arx:papers:2411.05257
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.05257
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bernhard Hientzsch, 2019. "Introduction to Solving Quant Finance Problems with Time-Stepped FBSDE and Deep Learning," Papers 1911.12231, arXiv.org.
    2. Arun Kumar Polala & Bernhard Hientzsch, 2023. "Parametric Differential Machine Learning for Pricing and Calibration," Papers 2302.06682, arXiv.org, revised Feb 2023.
    3. Ali Fathi & Bernhard Hientzsch, 2023. "A Comparison of Reinforcement Learning and Deep Trajectory Based Stochastic Control Agents for Stepwise Mean-Variance Hedging," Papers 2302.07996, arXiv.org, revised Nov 2023.
    4. Yajie Yu & Narayan Ganesan & Bernhard Hientzsch, 2023. "Backward Deep BSDE Methods and Applications to Nonlinear Problems," Risks, MDPI, vol. 11(3), pages 1-16, March.
    5. Bernhard Hientzsch, 2023. "Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging," Papers 2401.08600, arXiv.org.
    6. Arun Kumar Polala & Bernhard Hientzsch, 2024. "A case study on different one-factor Cheyette models for short maturity caplet calibration," Papers 2408.11257, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernhard Hientzsch, 2023. "Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging," Papers 2401.08600, arXiv.org.
    2. Yajie Yu & Bernhard Hientzsch & Narayan Ganesan, 2020. "Backward Deep BSDE Methods and Applications to Nonlinear Problems," Papers 2006.07635, arXiv.org.
    3. Ali Fathi & Bernhard Hientzsch, 2023. "A Comparison of Reinforcement Learning and Deep Trajectory Based Stochastic Control Agents for Stepwise Mean-Variance Hedging," Papers 2302.07996, arXiv.org, revised Nov 2023.
    4. Reilly Pickard & F. Wredenhagen & Y. Lawryshyn, 2024. "Optimizing Deep Reinforcement Learning for American Put Option Hedging," Papers 2405.08602, arXiv.org.
    5. Narayan Ganesan & Yajie Yu & Bernhard Hientzsch, 2020. "Pricing Barrier Options with DeepBSDEs," Papers 2005.10966, arXiv.org, revised Sep 2024.
    6. Takashi Furuya & Anastasis Kratsios, 2024. "Simultaneously Solving FBSDEs with Neural Operators of Logarithmic Depth, Constant Width, and Sub-Linear Rank," Papers 2410.14788, arXiv.org.
    7. Reilly Pickard & Finn Wredenhagen & Julio DeJesus & Mario Schlener & Yuri Lawryshyn, 2024. "Hedging American Put Options with Deep Reinforcement Learning," Papers 2405.06774, arXiv.org.
    8. Arun Kumar Polala & Bernhard Hientzsch, 2024. "A case study on different one-factor Cheyette models for short maturity caplet calibration," Papers 2408.11257, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.05257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.