A Case Study of Next Portfolio Prediction for Mutual Funds
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Vipul Satone & Dhruv Desai & Dhagash Mehta, 2021. "Fund2Vec: Mutual Funds Similarity using Graph Learning," Papers 2106.12987, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jerinsh Jeyapaulraj & Dhruv Desai & Peter Chu & Dhagash Mehta & Stefano Pasquali & Philip Sommer, 2022. "Supervised similarity learning for corporate bonds using Random Forest proximities," Papers 2207.04368, arXiv.org, revised Oct 2022.
- Rian Dolphin & Barry Smyth & Ruihai Dong, 2022. "A Multimodal Embedding-Based Approach to Industry Classification in Financial Markets," Papers 2211.06378, arXiv.org.
- Bhaskarjit Sarmah & Nayana Nair & Dhagash Mehta & Stefano Pasquali, 2022. "Learning Embedded Representation of the Stock Correlation Matrix using Graph Machine Learning," Papers 2207.07183, arXiv.org.
- Dhruv Desai & Ashmita Dhiman & Tushar Sharma & Deepika Sharma & Dhagash Mehta & Stefano Pasquali, 2023. "Quantifying Outlierness of Funds from their Categories using Supervised Similarity," Papers 2308.06882, arXiv.org.
- Dimitrios Vamvourellis & Mate Attila Toth & Dhruv Desai & Dhagash Mehta & Stefano Pasquali, 2022. "Learning Mutual Fund Categorization using Natural Language Processing," Papers 2207.04959, arXiv.org.
- Vadim Zlotnikov & Jiayu Liu & Igor Halperin & Fei He & Lisa Huang, 2023. "Model-Free Market Risk Hedging Using Crowding Networks," Papers 2306.08105, arXiv.org.
- Alejandro Rodriguez Dominguez, 2022. "Portfolio Optimization based on Neural Networks Sensitivities from Assets Dynamics respect Common Drivers," Papers 2202.08921, arXiv.org, revised Dec 2022.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FMK-2024-12-02 (Financial Markets)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.18098. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.