IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.07183.html
   My bibliography  Save this paper

Learning Embedded Representation of the Stock Correlation Matrix using Graph Machine Learning

Author

Listed:
  • Bhaskarjit Sarmah
  • Nayana Nair
  • Dhagash Mehta
  • Stefano Pasquali

Abstract

Understanding non-linear relationships among financial instruments has various applications in investment processes ranging from risk management, portfolio construction and trading strategies. Here, we focus on interconnectedness among stocks based on their correlation matrix which we represent as a network with the nodes representing individual stocks and the weighted links between pairs of nodes representing the corresponding pair-wise correlation coefficients. The traditional network science techniques, which are extensively utilized in financial literature, require handcrafted features such as centrality measures to understand such correlation networks. However, manually enlisting all such handcrafted features may quickly turn out to be a daunting task. Instead, we propose a new approach for studying nuances and relationships within the correlation network in an algorithmic way using a graph machine learning algorithm called Node2Vec. In particular, the algorithm compresses the network into a lower dimensional continuous space, called an embedding, where pairs of nodes that are identified as similar by the algorithm are placed closer to each other. By using log returns of S&P 500 stock data, we show that our proposed algorithm can learn such an embedding from its correlation network. We define various domain specific quantitative (and objective) and qualitative metrics that are inspired by metrics used in the field of Natural Language Processing (NLP) to evaluate the embeddings in order to identify the optimal one. Further, we discuss various applications of the embeddings in investment management.

Suggested Citation

  • Bhaskarjit Sarmah & Nayana Nair & Dhagash Mehta & Stefano Pasquali, 2022. "Learning Embedded Representation of the Stock Correlation Matrix using Graph Machine Learning," Papers 2207.07183, arXiv.org.
  • Handle: RePEc:arx:papers:2207.07183
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.07183
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    3. Vipul Satone & Dhruv Desai & Dhagash Mehta, 2021. "Fund2Vec: Mutual Funds Similarity using Graph Learning," Papers 2106.12987, arXiv.org.
    4. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    5. Xing Wang & Yijun Wang & Bin Weng & Aleksandr Vinel, 2020. "Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction with Representation Learning and Temporal Convolutional Network," Papers 2010.01197, arXiv.org.
    6. Eugene F. Fama & Kenneth R. French, 2004. "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 25-46, Summer.
    7. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    8. Danilo Delpini & Stefano Battiston & Guido Caldarelli & Massimo Riccaboni, 2019. "Systemic risk from investment similarities," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-15, May.
    9. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rian Dolphin & Barry Smyth & Ruihai Dong, 2024. "Contrastive Learning of Asset Embeddings from Financial Time Series," Papers 2407.18645, arXiv.org.
    2. Rian Dolphin & Barry Smyth & Ruihai Dong, 2022. "A Multimodal Embedding-Based Approach to Industry Classification in Financial Markets," Papers 2211.06378, arXiv.org.
    3. Rian Dolphin & Barry Smyth & Ruihai Dong, 2023. "Industry Classification Using a Novel Financial Time-Series Case Representation," Papers 2305.00245, arXiv.org.
    4. Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
    5. Dimitrios Vamvourellis & M'at'e Toth & Snigdha Bhagat & Dhruv Desai & Dhagash Mehta & Stefano Pasquali, 2023. "Company Similarity using Large Language Models," Papers 2308.08031, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
    2. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    3. Jean-Baptiste Hasse, 2022. "Systemic risk: a network approach," Empirical Economics, Springer, vol. 63(1), pages 313-344, July.
    4. Jean-Baptiste Hasse, 2020. "Systemic Risk: a Network Approach," Working Papers halshs-02893780, HAL.
    5. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    6. Paolo Bartesaghi & Michele Benzi & Gian Paolo Clemente & Rosanna Grassi & Ernesto Estrada, 2019. "Risk-dependent centrality in economic and financial networks," Papers 1907.07908, arXiv.org, revised Apr 2020.
    7. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    8. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    9. Alessandro Ferracci & Giulio Cimini, 2021. "Systemic risk in interbank networks: disentangling balance sheets and network effects," Papers 2109.14360, arXiv.org, revised Sep 2022.
    10. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    11. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    12. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    13. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    14. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    15. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    16. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    17. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    18. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    19. Christophe Chorro & Emmanuelle Jay & Philippe de Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Post-Print halshs-03216938, HAL.
    20. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.07183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.