IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.14984.html
   My bibliography  Save this paper

Risk Aggregation and Allocation in the Presence of Systematic Risk via Stable Laws

Author

Listed:
  • Andrew Fleck
  • Edward Furman
  • Yang Shen

Abstract

In order to properly manage risk, practitioners must understand the aggregate risks they are exposed to. Additionally, to properly price policies and calculate bonuses the relative riskiness of individual business units must be well understood. Certainly, Insurers and Financiers are interested in the properties of the sums of the risks they are exposed to and the dependence of risks therein. Realistic risk models however must account for a variety of phenomena: ill-defined moments, lack of elliptical dependence structures, excess kurtosis and highly heterogeneous marginals. Equally important is the concern over industry-wide systematic risks that can affect multiple business lines at once. Many techniques of varying sophistication have been developed with all or some of these problems in mind. We propose a modification to the classical individual risk model that allows us to model company-wide losses via the class of Multivariate Stable Distributions. Stable Distributions incorporate many of the unpleasant features required for a realistic risk model while maintaining tractable aggregation and dependence results. We additionally compute the Tail Conditional Expectation of aggregate risks within the model and the corresponding allocations.

Suggested Citation

  • Andrew Fleck & Edward Furman & Yang Shen, 2024. "Risk Aggregation and Allocation in the Presence of Systematic Risk via Stable Laws," Papers 2410.14984, arXiv.org.
  • Handle: RePEc:arx:papers:2410.14984
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.14984
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    2. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    2. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    3. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    4. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    5. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    6. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Discussion Papers ISBA 2019010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    9. Jianxi Su & Edward Furman, 2016. "A form of multivariate Pareto distribution with applications to financial risk measurement," Papers 1607.04737, arXiv.org.
    10. Denuit, Michel, 2019. "Size-biased risk measures of compound sums," LIDAM Discussion Papers ISBA 2019009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Christopher Bennett & Ričardas Zitikis, 2015. "Ignorance, lotteries, and measures of economic inequality," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 13(2), pages 309-316, June.
    12. Li, Xiaohu & Lin, Jianhua, 2011. "Stochastic orders in time transformed exponential models with applications," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 47-52, July.
    13. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    14. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    15. Zaks, Yaniv & Tsanakas, Andreas, 2014. "Optimal capital allocation in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 48-55.
    16. Asimit, Alexandru V. & Furman, Edward & Vernic, Raluca, 2010. "On a multivariate Pareto distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 308-316, April.
    17. Denuit, Michel & Robert, Christian Y., 2020. "From risk sharing to risk transfer: the analytics of collaborative insurance," LIDAM Discussion Papers ISBA 2020017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Li, Hao & Melnikov, Alexander, 2014. "Polynomial extensions of distributions and their applications in actuarial and financial modeling," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 250-260.
    19. Denuit, M. & Robert, C.Y., 2020. "Ultimate behavior of conditional mean risk sharing for independent compound Panjer-Katz sums with gamma and Pareto severities," LIDAM Discussion Papers ISBA 2020014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.14984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.