IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.12709.html
   My bibliography  Save this paper

A Simple Interactive Fixed Effects Estimator for Short Panels

Author

Listed:
  • Robert F. Phillips
  • Benjamin D. Williams

Abstract

We study the interactive effects (IE) model as an extension of the conventional additive effects (AE) model. For the AE model, the fixed effects estimator can be obtained by applying least squares to a regression that adds a linear projection of the fixed effect on the explanatory variables (Mundlak, 1978; Chamberlain, 1984). In this paper, we develop a novel estimator -- the projection-based IE (PIE) estimator -- for the IE model that is based on a similar approach. We show that, for the IE model, fixed effects estimators that have appeared in the literature are not equivalent to our PIE estimator, though both can be expressed as a generalized within estimator. Unlike the fixed effects estimators for the IE model, the PIE estimator is consistent for a fixed number of time periods with no restrictions on serial correlation or conditional heteroskedasticity in the errors. We also derive a statistic for testing the consistency of the two-way fixed effects estimator in the possible presence of iterative effects. Moreover, although the PIE estimator is the solution to a high-dimensional nonlinear least squares problem, we show that it can be computed by iterating between two steps, both of which have simple analytical solutions. The computational simplicity is an important advantage relative to other strategies that have been proposed for estimating the IE model for short panels. Finally, we compare the finite sample performance of IE estimators through simulations.

Suggested Citation

  • Robert F. Phillips & Benjamin D. Williams, 2024. "A Simple Interactive Fixed Effects Estimator for Short Panels," Papers 2410.12709, arXiv.org.
  • Handle: RePEc:arx:papers:2410.12709
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.12709
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    2. Westerlund, Joakim, 2019. "Testing additive versus interactive effects in fixed-T panels," Economics Letters, Elsevier, vol. 174(C), pages 5-8.
    3. Artūras Juodis & Vasilis Sarafidis, 2022. "A Linear Estimator for Factor-Augmented Fixed-T Panels With Endogenous Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 1-15, January.
    4. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    5. Goldberger, Arthur S, 1972. "Structural Equation Methods in the Social Sciences," Econometrica, Econometric Society, vol. 40(6), pages 979-1001, November.
    6. Evan Totty, 2017. "The Effect Of Minimum Wages On Employment: A Factor Model Approach," Economic Inquiry, Western Economic Association International, vol. 55(4), pages 1712-1737, October.
    7. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    8. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    9. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    10. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    11. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    12. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    13. Dukpa Kim & Tatsushi Oka, 2014. "Divorce Law Reforms And Divorce Rates In The Usa: An Interactive Fixed‐Effects Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 231-245, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    2. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    4. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    5. Yana Petrova & Joakim Westerlund, 2020. "Fixed effects demeaning in the presence of interactive effects in treatment effects regressions and elsewhere," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 960-964, November.
    6. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    7. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.
    8. Peter Backus & Thien Nguyen, 2021. "The Effect of the Sex Buyer Law on the Market for Sex, Sexual Health and Sexual Violence," Economics Discussion Paper Series 2106, Economics, The University of Manchester.
    9. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    10. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    11. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    12. Ekaterina Jardim & Mark C. Long & Robert Plotnick & Emma van Inwegen & Jacob Vigdor & Hilary Wething, 2017. "Minimum Wage Increases, Wages, and Low-Wage Employment: Evidence from Seattle," NBER Working Papers 23532, National Bureau of Economic Research, Inc.
    13. Timo Schenk, 2023. "Time-Weighted Difference-in-Differences: Accounting for Common Factors in Short T Panels," Tinbergen Institute Discussion Papers 23-004/III, Tinbergen Institute.
    14. Hayakawa, Kazuhiko, 2024. "Recent development of covariance structure analysis in economics," Econometrics and Statistics, Elsevier, vol. 29(C), pages 31-48.
    15. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
    17. Feng, Qu, 2020. "Common factors and common breaks in panels: An empirical investigation," Economics Letters, Elsevier, vol. 187(C).
    18. Yan Sun & Wei Huang, 2022. "Quasi-maximum likelihood estimation of short panel data models with time-varying individual effects," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 93-114, January.
    19. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    20. Harouna Sedgo & Luc Désiré Omgba, 2023. "Corruption and distortion of public expenditures: evidence from Africa," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 30(2), pages 419-452, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.12709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.