IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.09789.html
   My bibliography  Save this paper

No arbitrage and the existence of ACLMMs in general diffusion models

Author

Listed:
  • David Criens
  • Mikhail Urusov

Abstract

In a seminal paper, F. Delbaen and W. Schachermayer proved that the classical NA ("no arbitrage") condition implies the existence of an "absolutely continuous local martingale measure" (ACLMM). It is known that in general the existence of an ACLMM alone is not sufficient for NA. In this paper we investigate how close these notions are for single asset general diffusion market models. We show that NA is equivalent to the existence of an ACLMM plus a mild regularity condition on the scale function and the absence of reflecting boundaries. For infinite time horizon scenarios, the regularity assumption and the requirement on the boundaries can be dropped, showing equivalence between NA and the existence of an ACLMM. By means of counterexamples, we show that our characterization of NA for finite time horizons is sharp in the sense that neither the regularity condition on the scale function nor the absence of reflecting boundaries can be dropped.

Suggested Citation

  • David Criens & Mikhail Urusov, 2024. "No arbitrage and the existence of ACLMMs in general diffusion models," Papers 2410.09789, arXiv.org.
  • Handle: RePEc:arx:papers:2410.09789
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.09789
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Aleksandar Mijatović & Mikhail Urusov, 2015. "On the Loss of the Semimartingale Property at the Hitting Time of a Level," Journal of Theoretical Probability, Springer, vol. 28(3), pages 892-922, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan Beggs, 2021. "Afriat and arbitrage," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(2), pages 167-176, October.
    2. Marcelo F. Perillo, 2021. "Valuación de Títulos de Deuda Indexados al Comportamiento de un Índice Accionario: Un Modelo sin Riesgo de Crédito," CEMA Working Papers: Serie Documentos de Trabajo. 784, Universidad del CEMA.
    3. Chris Kenyon & Andrew Green, 2015. "Self-Financing Trading and the Ito-Doeblin Lemma," Papers 1501.02750, arXiv.org.
    4. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    5. Badics, Tamás, 2011. "Az arbitrázs preferenciákkal történő karakterizációjáról [On the characterization of arbitrage in terms of preferences]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 727-742.
    6. Timothy Johnson, 2015. "Reciprocity as a Foundation of Financial Economics," Journal of Business Ethics, Springer, vol. 131(1), pages 43-67, September.
    7. Bekiros, Stelios & Kouloumpou, Dimitra, 2019. "On the pricing of exotic options: A new closed-form valuation approach," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 153-162.
    8. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    9. Clarence Simard & Bruno Rémillard, 2019. "Pricing European Options in a Discrete Time Model for the Limit Order Book," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 985-1005, September.
    10. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    11. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    12. N. Azevedo & D. Pinheiro & S. Z. Xanthopoulos & A. N. Yannacopoulos, 2018. "Who would invest only in the risk-free asset?," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-14, September.
    13. Leitner, Johannes, 2000. "Convergence of Arbitrage-free Discrete Time Markovian Market Models," CoFE Discussion Papers 00/07, University of Konstanz, Center of Finance and Econometrics (CoFE).
    14. Hardeep Singh Mundi, 2023. "Risk neutral variances to compute expected returns using data from S&P BSE 100 firms—a replication study," Management Review Quarterly, Springer, vol. 73(1), pages 215-230, February.
    15. Zia Ur Rehman & Noor Muhammad & Bilal Sarwar & Muhammad Asif Raz, 2019. "Impact of risk management strategies on the credit risk faced by commercial banks of Balochistan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-13, December.
    16. repec:uts:finphd:40 is not listed on IDEAS
    17. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    18. Kyng, T. & Konstandatos, O. & Bienek, T., 2016. "Valuation of employee stock options using the exercise multiple approach and life tables," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 17-26.
    19. Shin-Yun Wang & Ming-Che Chuang & Shih-Kuei Lin & So-De Shyu, 2021. "Option pricing under stock market cycles with jump risks: evidence from the S&P 500 index," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 25-51, January.
    20. Detlefsen, Kai & Härdle, Wolfgang Karl & Moro, Rouslan A., 2007. "Empirical pricing kernels and investor preferences," SFB 649 Discussion Papers 2007-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    21. Dominique Pépin, 2010. "L'évaluation du prix des actions par les fondamentaux : analyse du marché français," Economie & Prévision, La Documentation Française, vol. 0(4), pages 83-98.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.09789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.