IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.07216.html
   My bibliography  Save this paper

Evaluating Financial Relational Graphs: Interpretation Before Prediction

Author

Listed:
  • Yingjie Niu
  • Lanxin Lu
  • Rian Dolphin
  • Valerio Poti
  • Ruihai Dong

Abstract

Accurate and robust stock trend forecasting has been a crucial and challenging task, as stock price changes are influenced by multiple factors. Graph neural network-based methods have recently achieved remarkable success in this domain by constructing stock relationship graphs that reflect internal factors and relationships between stocks. However, most of these methods rely on predefined factors to construct static stock relationship graphs due to the lack of suitable datasets, failing to capture the dynamic changes in stock relationships. Moreover, the evaluation of relationship graphs in these methods is often tied to the performance of neural network models on downstream tasks, leading to confusion and imprecision. To address these issues, we introduce the SPNews dataset, collected based on S\&P 500 Index stocks, to facilitate the construction of dynamic relationship graphs. Furthermore, we propose a novel set of financial relationship graph evaluation methods that are independent of downstream tasks. By using the relationship graph to explain historical financial phenomena, we assess its validity before constructing a graph neural network, ensuring the graph's effectiveness in capturing relevant financial relationships. Experimental results demonstrate that our evaluation methods can effectively differentiate between various financial relationship graphs, yielding more interpretable results compared to traditional approaches. We make our source code publicly available on GitHub to promote reproducibility and further research in this area.

Suggested Citation

  • Yingjie Niu & Lanxin Lu & Rian Dolphin & Valerio Poti & Ruihai Dong, 2024. "Evaluating Financial Relational Graphs: Interpretation Before Prediction," Papers 2410.07216, arXiv.org.
  • Handle: RePEc:arx:papers:2410.07216
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.07216
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Usman & Hirshleifer, David, 2020. "Shared analyst coverage: Unifying momentum spillover effects," Journal of Financial Economics, Elsevier, vol. 136(3), pages 649-675.
    2. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    3. Christian Brownlees & Robert F. Engle, 2017. "SRISK: A Conditional Capital Shortfall Measure of Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 48-79.
    4. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    5. Rian Dolphin & Barry Smyth & Ruihai Dong, 2022. "Stock Embeddings: Learning Distributed Representations for Financial Assets," Papers 2202.08968, arXiv.org.
    6. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hakan Eratalay & Evgenii V. Vladimirov, 2020. "Mapping the stocks in MICEX: Who is central in the Moscow Stock Exchange?," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 28(4), pages 581-620, October.
    2. Long, Xiangdong & Su, Liangjun & Ullah, Aman, 2011. "Estimation and Forecasting of Dynamic Conditional Covariance: A Semiparametric Multivariate Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 109-125.
    3. Li, Lihui & Wen, Tao, 2013. "Estimation of C-MGARCH models based on the MBP method," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 665-673.
    4. Llorens-Terrazas, Jordi & Brownlees, Christian, 2023. "Projected Dynamic Conditional Correlations," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1761-1776.
    5. Christian M. Hafner & Dick van Dijk & Philip Hans Franses, 2006. "Semi-Parametric Modelling of Correlation Dynamics," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 59-103, Emerald Group Publishing Limited.
    6. Xiangdong Long & Liangjun Su & Aman Ullah, 2009. "Estimation and Forecasting of Dynamic Conditional Covariance: A Semiparametric Multivariate Model Variables with Econometric Applications," Working Papers 200908, University of California at Riverside, Department of Economics, revised Jul 2009.
    7. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    8. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    9. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    10. Xisong Jin, 2018. "How much does book value data tell us about systemic risk and its interactions with the macroeconomy? A Luxembourg empirical evaluation," BCL working papers 118, Central Bank of Luxembourg.
    11. Charlot, Philippe & Darné, Olivier & Moussa, Zakaria, 2016. "Commodity returns co-movements: Fundamentals or “style” effect?," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 130-160.
    12. Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    13. Małgorzata Doman, 2005. "The Co-movement Between Returns of Foreign Exchange Rates in the Central European Countries," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 10, pages 157-175, University of Lodz.
    14. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    15. Ülkü, Numan & Weber, Enzo, 2013. "Identifying the interaction between stock market returns and trading flows of investor types: Looking into the day using daily data," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2733-2749.
    16. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    17. Colavecchio, Roberta & Funke, Michael, 2008. "Volatility transmissions between renminbi and Asia-Pacific on-shore and off-shore U.S. dollar futures," China Economic Review, Elsevier, vol. 19(4), pages 635-648, December.
    18. Nicola, Francesca de & De Pace, Pierangelo & Hernandez, Manuel A., 2016. "Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment," Energy Economics, Elsevier, vol. 57(C), pages 28-41.
    19. Akhtaruzzaman, Md & Shamsuddin, Abul & Easton, Steve, 2014. "Dynamic correlation analysis of spill-over effects of interest rate risk and return on Australian and US financial firms," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 378-396.
    20. Yilmaz, Tolgahan, 2010. "Improving Portfolio Optimization by DCC And DECO GARCH: Evidence from Istanbul Stock Exchange," MPRA Paper 27314, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.07216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.