IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.04179.html
   My bibliography  Save this paper

Computing Most Equitable Voting Rules

Author

Listed:
  • Lirong Xia

Abstract

How to design fair and (computationally) efficient voting rules is a central challenge in Computational Social Choice. In this paper, we aim at designing efficient algorithms for computing most equitable rules for large classes of preferences and decisions, which optimally satisfy two fundamental fairness/equity axioms: anonymity (every voter being treated equally) and neutrality (every alternative being treated equally). By revealing a natural connection to the graph isomorphism problem and leveraging recent breakthroughs by Babai [2019], we design quasipolynomial-time algorithms that compute most equitable rules with verifications, which also compute verifications about whether anonymity and neutrality are satisfied at the input profile. Further extending this approach, we propose the canonical-labeling tie-breaking, which runs in quasipolynomial-time and optimally breaks ties to preserve anonymity and neutrality. As for the complexity lower bound, we prove that even computing verifications for most equitable rules is GI-complete (i.e., as hard as the graph isomorphism problem), and sometimes GA-complete (i.e., as hard as the graph automorphism problem), for many commonly studied combinations of preferences and decisions. To the best of our knowledge, these are the first problems in computational social choice that are known to be complete in the class GI or GA.

Suggested Citation

  • Lirong Xia, 2024. "Computing Most Equitable Voting Rules," Papers 2410.04179, arXiv.org.
  • Handle: RePEc:arx:papers:2410.04179
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.04179
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniela Bubboloni & Michele Gori, 2014. "Anonymous and neutral majority rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(2), pages 377-401, August.
    2. Bubboloni, Daniela & Gori, Michele, 2015. "Symmetric majority rules," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 73-86.
    3. Haris Aziz & Markus Brill & Vincent Conitzer & Edith Elkind & Rupert Freeman & Toby Walsh, 2017. "Justified representation in approval-based committee voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(2), pages 461-485, February.
    4. Myerson, Roger B., 2013. "Fundamentals of Social Choice Theory," Quarterly Journal of Political Science, now publishers, vol. 8(3), pages 305-337, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostapha Diss & Michele Gori, 2022. "Majority properties of positional social preference correspondences," Theory and Decision, Springer, vol. 92(2), pages 319-347, March.
    2. Bubboloni, Daniela & Gori, Michele, 2016. "Resolute refinements of social choice correspondences," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 37-49.
    3. Bubboloni, Daniela & Gori, Michele, 2016. "On the reversal bias of the Minimax social choice correspondence," Mathematical Social Sciences, Elsevier, vol. 81(C), pages 53-61.
    4. Daniela Bubboloni & Michele Gori & Claudia Meo, 2024. "Resolute and symmetric mechanisms for two-sided matching problems," Papers 2404.01404, arXiv.org, revised Nov 2024.
    5. Lirong Xia, 2022. "Most Equitable Voting Rules," Papers 2205.14838, arXiv.org, revised Jul 2023.
    6. Ali I. Ozkes & M. Remzi Sanver, 2021. "Anonymous, neutral, and resolute social choice revisited," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 97-113, July.
    7. Daniela Bubboloni & Michele Gori, 2021. "Breaking ties in collective decision-making," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 411-457, June.
    8. Philippe De Donder & Michel Le Breton & Eugenio Peluso, 2012. "Majority Voting in Multidimensional Policy Spaces: Kramer–Shepsle versus Stackelberg," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(6), pages 879-909, December.
    9. Markus Brill & Jean-François Laslier & Piotr Skowron, 2018. "Multiwinner approval rules as apportionment methods," Journal of Theoretical Politics, , vol. 30(3), pages 358-382, July.
    10. Hiroki Saitoh, 2022. "Characterization of tie-breaking plurality rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(1), pages 139-173, July.
    11. Joungseok Park, 2016. "How Democracy Matters: Evidence of Electoral Incentives for Environmental Policy," Working Papers 16-20, Department of Economics, Appalachian State University.
    12. Islam, Jamal & Mohajan, Haradhan & Moolio, Pahlaj, 2010. "Methods of voting system and manipulation of voting," MPRA Paper 50854, University Library of Munich, Germany, revised 06 May 2010.
    13. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2019. "On some k-scoring rules for committee elections: agreement and Condorcet Principle," Working Papers hal-02147735, HAL.
    14. Csóka, Péter & Kondor, Gábor, 2019. "Delegációk igazságos kiválasztása társadalmi választások elméletével [Choosing a fair delegation by social choice theory]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 771-787.
    15. Steven J. Brams & Markus Brill & Anne-Marie George, 2022. "The excess method: a multiwinner approval voting procedure to allocate wasted votes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 58(2), pages 283-300, February.
    16. Klaus Schmidt-Hebbel & José-Carlos Tello, 2014. "The Political Economy of Growth, Inequality, the Size and Composition of Government Spending," Working Papers 19, Peruvian Economic Association.
    17. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2018. "The Chamberlin-Courant Rule and the k-Scoring Rules: Agreement and Condorcet Committee Consistency," Working Papers halshs-01817943, HAL.
    18. Jamal Nazrul Islam & Haradhan Kumar Mohajan & Pahlaj Moolio, 2009. "Preference of Social Choice in Mathematical Economics," Indus Journal of Management & Social Science (IJMSS), Department of Business Administration, vol. 3(1), pages 18-38, June.
    19. Daniela Bubboloni & Michele Gori, 2018. "The flow network method," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(4), pages 621-656, December.
    20. McMorris, F.R. & Mulder, Henry Martyn & Novick, Beth & Powers, Robert C., 2021. "Majority rule for profiles of arbitrary length, with an emphasis on the consistency axiom," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 164-174.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.04179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.