IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.04179.html
   My bibliography  Save this paper

Computing Most Equitable Voting Rules

Author

Listed:
  • Lirong Xia

Abstract

How to design fair and (computationally) efficient voting rules is a central challenge in Computational Social Choice. In this paper, we aim at designing efficient algorithms for computing most equitable rules for large classes of preferences and decisions, which optimally satisfy two fundamental fairness/equity axioms: anonymity (every voter being treated equally) and neutrality (every alternative being treated equally). By revealing a natural connection to the graph isomorphism problem and leveraging recent breakthroughs by Babai [2019], we design quasipolynomial-time algorithms that compute most equitable rules with verifications, which also compute verifications about whether anonymity and neutrality are satisfied at the input profile. Further extending this approach, we propose the canonical-labeling tie-breaking, which runs in quasipolynomial-time and optimally breaks ties to preserve anonymity and neutrality. As for the complexity lower bound, we prove that even computing verifications for most equitable rules is GI-complete (i.e., as hard as the graph isomorphism problem), and sometimes GA-complete (i.e., as hard as the graph automorphism problem), for many commonly studied combinations of preferences and decisions. To the best of our knowledge, these are the first problems in computational social choice that are known to be complete in the class GI or GA.

Suggested Citation

  • Lirong Xia, 2024. "Computing Most Equitable Voting Rules," Papers 2410.04179, arXiv.org.
  • Handle: RePEc:arx:papers:2410.04179
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.04179
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.04179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.