IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.04496.html
   My bibliography  Save this paper

Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process

Author

Listed:
  • Mohamed Ben Alaya
  • Martin Friesen
  • Jonas Kremer

Abstract

We study the Volterra Volterra Cox-Ingersoll-Ross process on $\mathbb{R}_+$ and its stationary version. Based on a fine asymptotic analysis of the corresponding Volterra Riccati equation combined with the affine transformation formula, we first show that the finite-dimensional distributions of this process are asymptotically independent. Afterwards, we prove a law-of-large numbers in $L^p$(\Omega)$ with $p \geq 2$ and show that the stationary process is ergodic. As an application, we prove the consistency of the method of moments and study the maximum-likelihood estimation for continuous and discrete high-frequency observations.

Suggested Citation

  • Mohamed Ben Alaya & Martin Friesen & Jonas Kremer, 2024. "Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process," Papers 2409.04496, arXiv.org.
  • Handle: RePEc:arx:papers:2409.04496
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.04496
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aur'elien Alfonsi, 2023. "Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation," Papers 2302.07758, arXiv.org, revised Oct 2024.
    2. Christian Bayer & Simon Breneis, 2023. "Markovian approximations of stochastic Volterra equations with the fractional kernel," Quantitative Finance, Taylor & Francis Journals, vol. 23(1), pages 53-70, January.
    3. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    4. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    5. Masaaki Fukasawa, 2021. "Volatility has to be rough," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 1-8, January.
    6. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    7. Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2012. "On parameter estimation for critical affine processes," Papers 1210.1866, arXiv.org, revised Mar 2013.
    8. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2019. "Moment explosions in the rough Heston model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 575-608, December.
    9. Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
    10. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    11. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    2. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    3. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    4. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.
    5. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    6. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    7. Ulrich Horst & Wei Xu & Rouyi Zhang, 2023. "Convergence of Heavy-Tailed Hawkes Processes and the Microstructure of Rough Volatility," Papers 2312.08784, arXiv.org.
    8. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Central limit theorems," Papers 2210.01216, arXiv.org, revised Jun 2024.
    9. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Sep 2023.
    10. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
    11. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    12. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    13. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    14. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    15. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    16. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    17. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    18. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    19. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    20. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.04496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.