IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.14214.html
   My bibliography  Save this paper

Modeling the Dynamics of Growth in Master-Planned Communities

Author

Listed:
  • Christopher K. Allsup
  • Irene S. Gabashvili

Abstract

This paper describes how a time-varying Markov model was used to forecast housing development at a master-planned community during a transition from high to low growth. Our approach draws on detailed historical data to model the dynamics of the market participants, producing results that are entirely data-driven and free of bias. While traditional time series forecasting methods often struggle to account for nonlinear regime changes in growth, our approach successfully captures the onset of buildout as well as external economic shocks, such as the 1990 and 2008-2011 recessions and the 2021 post-pandemic boom. This research serves as a valuable tool for urban planners, homeowner associations, and property stakeholders aiming to navigate the complexities of growth at master-planned communities during periods of both system stability and instability.

Suggested Citation

  • Christopher K. Allsup & Irene S. Gabashvili, 2024. "Modeling the Dynamics of Growth in Master-Planned Communities," Papers 2408.14214, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2408.14214
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.14214
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Greg T. Smersh & Marc T. Smith & Arthur L. Schwartz, Jr., 2003. "Factors Affecting Residential Property Development Patterns," Journal of Real Estate Research, American Real Estate Society, vol. 25(1), pages 61-76.
    2. Václav Adamec, 2018. "Disparity in Performance of the Czech Construction Sector: Evidence from the Markov-Switching Model," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1383-1391.
    3. Melissa Shakro, 2013. "Tracking neighborhood development and behavioral trends with building permits in Austin, Texas," Journal of Maps, Taylor & Francis Journals, vol. 9(2), pages 189-197, June.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    2. Fédéric Holm-Hadulla & Kirstin Hubrich, 2017. "Macroeconomic Implications of Oil Price Fluctuations : A Regime-Switching Framework for the Euro Area," Finance and Economics Discussion Series 2017-063, Board of Governors of the Federal Reserve System (U.S.).
    3. Pan, Zhiyuan & Xiao, Dongli & Dong, Qingma & Liu, Li, 2022. "Structural breaks, macroeconomic fundamentals and cross hedge ratio," Finance Research Letters, Elsevier, vol. 47(PA).
    4. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Kirstin Hubrich & Daniel F. Waggoner, 2022. "The Transmission of Financial Shocks and Leverage of Financial Institutions: An Endogenous Regime-Switching Framework," FRB Atlanta Working Paper 2022-5, Federal Reserve Bank of Atlanta.
    6. Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
    7. Aye, Goodness C. & Chang, Tsangyao & Gupta, Rangan, 2016. "Is gold an inflation-hedge? Evidence from an interrupted Markov-switching cointegration model," Resources Policy, Elsevier, vol. 48(C), pages 77-84.
    8. Marie Bessec, 2015. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Post-Print hal-01276824, HAL.
    9. Stefano Grassi & Francesco Ravazzolo & Joaquin Vespignani & Giorgio Vocalelli, 2023. "Global Money Supply and Energy and Non-Energy Commodity Prices: A MS-TV-VAR Approach," CAMA Working Papers 2023-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2022. "Dynamic Mixture Vector Autoregressions with Score-Driven Weights," Research Papers in Economics 2022-02, University of Trier, Department of Economics.
    11. Chotipong Charoensom, 2024. "An Estimation of Regime Switching Models with Nonlinear Endogenous Switching," PIER Discussion Papers 217, Puey Ungphakorn Institute for Economic Research.
    12. Chang, Yoosoon & Maih, Junior & Tan, Fei, 2021. "Origins of monetary policy shifts: A New approach to regime switching in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    13. Keddad, Benjamin, 2024. "Asian stock market volatility and economic policy uncertainty: The role of world and regional leaders," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    14. Chang, Yoosoon & Choi, Yongok & Park, Joon Y., 2017. "A new approach to model regime switching," Journal of Econometrics, Elsevier, vol. 196(1), pages 127-143.
    15. Harvey, A. & Palumbo, D., 2021. "Regime switching models for directional and linear observations," Cambridge Working Papers in Economics 2123, Faculty of Economics, University of Cambridge.
    16. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    17. Yoosoon Chang & Fei Tan & Xin Wei, 2018. "State Space Models with Endogenous Regime Switching," CAEPR Working Papers 2018-012, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    18. van Os, Bram & van Dijk, Dick, 2024. "Accelerating peak dating in a dynamic factor Markov-switching model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 313-323.
    19. Stefan Fiesel & Marliese Uhrig-Homburg, 2016. "Illiquidity Transmission in a Three-Country Framework: A Conditional Approach," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 17(3), pages 261-284, December.
    20. Mohammad Enamul Hoque & Mohd Azlan Shah Zaidi & M. Kabir Hassan, 2021. "Geopolitical Uncertainties and Malaysian Stock Market Returns: Do Market Conditions Matter?," Mathematics, MDPI, vol. 9(19), pages 1-16, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.14214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.