IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.11224.html
   My bibliography  Save this paper

Optimal Guarantees for Online Selection Over Time

Author

Listed:
  • Sebastian Perez-Salazar
  • Victor Verdugo

Abstract

Prophet inequalities are a cornerstone in optimal stopping and online decision-making. Traditionally, they involve the sequential observation of $n$ non-negative independent random variables and face irrevocable accept-or-reject choices. The goal is to provide policies that provide a good approximation ratio against the optimal offline solution that can access all the values upfront -- the so-called prophet value. In the prophet inequality over time problem (POT), the decision-maker can commit to an accepted value for $\tau$ units of time, during which no new values can be accepted. This creates a trade-off between the duration of commitment and the opportunity to capture potentially higher future values. In this work, we provide best possible worst-case approximation ratios in the IID setting of POT for single-threshold algorithms and the optimal dynamic programming policy. We show a single-threshold algorithm that achieves an approximation ratio of $(1+e^{-2})/2\approx 0.567$, and we prove that no single-threshold algorithm can surpass this guarantee. With our techniques, we can analyze simple algorithms using $k$ thresholds and show that with $k=3$ it is possible to get an approximation ratio larger than $\approx 0.602$. Then, for each $n$, we prove it is possible to compute the tight worst-case approximation ratio of the optimal dynamic programming policy for instances with $n$ values by solving a convex optimization program. A limit analysis of the first-order optimality conditions yields a nonlinear differential equation showing that the optimal dynamic programming policy's asymptotic worst-case approximation ratio is $\approx 0.618$. Finally, we extend the discussion to adversarial settings and show an optimal worst-case approximation ratio of $\approx 0.162$ when the values are streamed in random order.

Suggested Citation

  • Sebastian Perez-Salazar & Victor Verdugo, 2024. "Optimal Guarantees for Online Selection Over Time," Papers 2408.11224, arXiv.org.
  • Handle: RePEc:arx:papers:2408.11224
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.11224
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kertz, Robert P., 1986. "Stop rule and supremum expectations of i.i.d. random variables: A complete comparison by conjugate duality," Journal of Multivariate Analysis, Elsevier, vol. 19(1), pages 88-112, June.
    2. Yann Disser & John Fearnley & Martin Gairing & Oliver Göbel & Max Klimm & Daniel Schmand & Alexander Skopalik & Andreas Tönnis, 2020. "Hiring Secretaries over Time: The Benefit of Concurrent Employment," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 323-352, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabien Gensbittel & Dana Pizarro & Jérôme Renault, 2024. "Competition and Recall in Selection Problems," Dynamic Games and Applications, Springer, vol. 14(4), pages 806-845, September.
    2. Saint-Mont, Uwe, 2002. "A Simple Derivation of a Complicated Prophet Region," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 67-72, January.
    3. Uwe Saint-Mont, 2017. "Comparing Different Information Levels," The Open Statistics and Probability Journal, Bentham Open, vol. 8(1), pages 7-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.11224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.