IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.17523.html
   My bibliography  Save this paper

How does the national new area impact the local economy? -- An empirical analysis from Zhoushan

Author

Listed:
  • Yi Zheng

Abstract

To empirically study the policy impact of a National New Area on the local economy, this paper evaluates the effect of the Zhoushan Archipelago New Area on local GDP growth rate and economic efficiency. By collecting input and output data from 20 prefectural-level cities in Jiangsu, Zhejiang, and Anhui provinces from 1995 to 2015, we estimate the economic efficiency of these cities using data envelopment analysis. Subsequently, we construct counterfactuals for Zhoushan by selecting comparable cities from the dataset, excluding Zhoushan, and applying a panel data approach. The difference between the actual and counterfactual values for GDP growth rate and economic efficiency in Zhoushan is analyzed to determine the treatment effect of the National New Area policy. The research reveals that in the initial four years, the New Area policy enhanced Zhoushan's economic efficiency but negatively affected its GDP growth rate. This influence gradually disappeared after four years. Further analysis suggests that the policy's effect on GDP growth rate varies with the level of economic development in different regions, having a more substantial impact in less developed areas. Therefore, we conclude that establishing a New Area in relatively undeveloped zones is more advantageous.

Suggested Citation

  • Yi Zheng, 2024. "How does the national new area impact the local economy? -- An empirical analysis from Zhoushan," Papers 2407.17523, arXiv.org.
  • Handle: RePEc:arx:papers:2407.17523
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.17523
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon Alder & Lin Shao & Fabrizio Zilibotti, 2016. "Economic reforms and industrial policy in a panel of Chinese cities," Journal of Economic Growth, Springer, vol. 21(4), pages 305-349, December.
    2. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    3. Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke, Xiao & Chen, Haiqiang & Hong, Yongmiao & Hsiao, Cheng, 2017. "Do China's high-speed-rail projects promote local economy?—New evidence from a panel data approach," China Economic Review, Elsevier, vol. 44(C), pages 203-226.
    2. Li, Hongjun & Li, Qi & Shi, Yutang, 2017. "Determining the number of factors when the number of factors can increase with sample size," Journal of Econometrics, Elsevier, vol. 197(1), pages 76-86.
    3. Li, Xiao & Qiao, Yuanbo & Shi, Lei, 2019. "Has China's war on pollution slowed the growth of its manufacturing and by how much? Evidence from the Clean Air Action," China Economic Review, Elsevier, vol. 53(C), pages 271-289.
    4. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    5. Christian Growitsch & Tooraj Jamasb & Christine Müller & Matthias Wissner, 2016. "Social Cost Efficient Service Quality: Integrating Customer Valuation in Incentive Regulation—Evidence from the Case of Norway," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 71-91, Springer.
    6. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, March.
    7. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    8. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    9. repec:lan:wpaper:1115 is not listed on IDEAS
    10. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    11. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    12. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    13. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    14. Bo Li & Muhammad Mohiuddin & Qian Liu, 2019. "Determinants and Differences of Township Hospital Efficiency among Chinese Provinces," IJERPH, MDPI, vol. 16(9), pages 1-16, May.
    15. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    16. Nijkamp, P. & Stough, R. & Sahin, M., 2009. "Impact of social and human capital on business performance of migrant entrepreneurs - a comparative dutch-us study," Serie Research Memoranda 0017, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    17. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    18. Echevarría, Cruz A. & Hasancebi, Serhat & García-Enríquez, Javier, 2022. "Economic Effects of Macao’s Integration with Mainland China: A Causal Inference Study," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 37(2), pages 179-215.
    19. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    20. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    21. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.17523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.