IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.10909.html
   My bibliography  Save this paper

FinDKG: Dynamic Knowledge Graphs with Large Language Models for Detecting Global Trends in Financial Markets

Author

Listed:
  • Xiaohui Victor Li
  • Francesco Sanna Passino

Abstract

Dynamic knowledge graphs (DKGs) are popular structures to express different types of connections between objects over time. They can also serve as an efficient mathematical tool to represent information extracted from complex unstructured data sources, such as text or images. Within financial applications, DKGs could be used to detect trends for strategic thematic investing, based on information obtained from financial news articles. In this work, we explore the properties of large language models (LLMs) as dynamic knowledge graph generators, proposing a novel open-source fine-tuned LLM for this purpose, called the Integrated Contextual Knowledge Graph Generator (ICKG). We use ICKG to produce a novel open-source DKG from a corpus of financial news articles, called FinDKG, and we propose an attention-based GNN architecture for analysing it, called KGTransformer. We test the performance of the proposed model on benchmark datasets and FinDKG, demonstrating superior performance on link prediction tasks. Additionally, we evaluate the performance of the KGTransformer on FinDKG for thematic investing, showing it can outperform existing thematic ETFs.

Suggested Citation

  • Xiaohui Victor Li & Francesco Sanna Passino, 2024. "FinDKG: Dynamic Knowledge Graphs with Large Language Models for Detecting Global Trends in Financial Markets," Papers 2407.10909, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2407.10909
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.10909
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    2. Daron Acemoglu & Ufuk Akcigit & William Kerr, 2016. "Networks and the Macroeconomy: An Empirical Exploration," NBER Macroeconomics Annual, University of Chicago Press, vol. 30(1), pages 273-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Efrem Castelnuovo & Guay Lim, 2019. "What Do We Know About the Macroeconomic Effects of Fiscal Policy? A Brief Survey of the Literature on Fiscal Multipliers," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 52(1), pages 78-93, March.
    2. Hansen, Stephen & Davis, Steven & Seminario-Amez, Cristhian, 2020. "Firm-level Risk Exposures and Stock Returns in the Wake of COVID-19," CEPR Discussion Papers 15314, C.E.P.R. Discussion Papers.
    3. Croce, M.M. & Nguyen, Thien T. & Raymond, S. & Schmid, L., 2019. "Government debt and the returns to innovation," Journal of Financial Economics, Elsevier, vol. 132(3), pages 205-225.
    4. Nikolay Hristov & Markus Roth, 2019. "Uncertainty Shocks and Financial Crisis Indicators," CESifo Working Paper Series 7839, CESifo.
    5. Lo Turco, Alessia & Maggioni, Daniela & Zazzaro, Alberto, 2019. "Financial dependence and growth: The role of input-output linkages," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 308-328.
    6. Anja Kukuvec & Harald Oberhofer, 2020. "The Propagation of Business Expectations within the European Union," CESifo Working Paper Series 8198, CESifo.
    7. Deshuai Hou & Luhan Shi & Hong He & Jian Xiong, 2023. "Research on the Deviation of Corporate Green Behaviour under Economic Policy Uncertainty Based on the Perspective of Green Technology Innovation in Chinese Listed Companies," Sustainability, MDPI, vol. 15(9), pages 1-27, May.
    8. Manfred M. Fischer & Florian Huber & Michael Pfarrhofer, 2018. "The transmission of uncertainty shocks on income inequality: State-level evidence from the United States," Papers 1806.08278, arXiv.org.
    9. Idriss Fontaine, 2021. "Uncertainty and Labour Force Participation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 437-471, April.
    10. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    11. Kučerová, Zuzana & Pakši, Daniel & Koňařík, Vojtěch, 2024. "Macroeconomic fundamentals and attention: What drives european consumers’ inflation expectations?," Economic Systems, Elsevier, vol. 48(1).
    12. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    13. Salzmann, Leonard, 2020. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224588, Verein für Socialpolitik / German Economic Association.
    14. Yingce Yang & Junjie Guo & Ruihong He, 2023. "The Asymmetric Impact of the Oil Price and Disaggregate Shocks on Economic Policy Uncertainty: Evidence From China," SAGE Open, , vol. 13(2), pages 21582440231, June.
    15. Chan, Yue-Cheong & Saffar, Walid & Wei, K.C. John, 2021. "How economic policy uncertainty affects the cost of raising equity capital: Evidence from seasoned equity offerings," Journal of Financial Stability, Elsevier, vol. 53(C).
    16. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    17. Yoshito Funashima, 2022. "Economic policy uncertainty and unconventional monetary policy," Manchester School, University of Manchester, vol. 90(3), pages 278-292, June.
    18. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    19. Ma, Yongfan & Hu, Xingcun, 2024. "Shadow banking and SME investment: Evidence from China's new asset management regulations," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 332-349.
    20. Ongena, Steven & Savaşer, Tanseli & Şişli Ciamarra, Elif, 2022. "CEO incentives and bank risk over the business cycle," Journal of Banking & Finance, Elsevier, vol. 138(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.10909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.