IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.13486.html
   My bibliography  Save this paper

Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms

Author

Listed:
  • Duy Khanh Lam

Abstract

The standard approach for constructing a Mean-Variance portfolio involves estimating parameters for the model using collected samples. However, since the distribution of future data may not resemble that of the training set, the out-of-sample performance of the estimated portfolio is worse than one derived with true parameters, which has prompted several innovations for better estimation. Instead of treating the data without a timing aspect as in the common training-backtest approach, this paper adopts a perspective where data gradually and continuously reveal over time. The original model is recast into an online learning framework, which is free from any statistical assumptions, to propose a dynamic strategy of sequential portfolios such that its empirical utility, Sharpe ratio, and growth rate asymptotically achieve those of the true portfolio, derived with perfect knowledge of the future data. When the distribution of future data has a normal shape, the growth rate of wealth is shown to increase by lifting the portfolio along the efficient frontier through the calibration of risk aversion. Since risk aversion cannot be appropriately predetermined, another proposed algorithm updating this coefficient over time forms a dynamic strategy approaching the optimal empirical Sharpe ratio or growth rate associated with the true coefficient. The performance of these proposed strategies is universally guaranteed under specific stochastic markets. Furthermore, in stationary and ergodic markets, the so-called Bayesian strategy utilizing true conditional distributions, based on observed past market information during investment, almost surely does not perform better than the proposed strategies in terms of empirical utility, Sharpe ratio, or growth rate, which, in contrast, do not rely on conditional distributions.

Suggested Citation

  • Duy Khanh Lam, 2024. "Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms," Papers 2406.13486, arXiv.org.
  • Handle: RePEc:arx:papers:2406.13486
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.13486
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    3. Vijay K. Chopra & Chris R. Hensel & Andrew L. Turner, 1993. "Massaging Mean-Variance Inputs: Returns from Alternative Global Investment Strategies in the 1980s," Management Science, INFORMS, vol. 39(7), pages 845-855, July.
    4. Grauer, Robert R., 1981. "A Comparison of Growth Optimal and Mean Variance Investment Policies," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 16(1), pages 1-21, March.
    5. Ang, Andrew, 2014. "Asset Management: A Systematic Approach to Factor Investing," OUP Catalogue, Oxford University Press, number 9780199959327.
    6. Yusif Simaan, 1997. "Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model," Management Science, INFORMS, vol. 43(10), pages 1437-1446, October.
    7. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    2. Becker, Franziska & Gürtler, Marc & Hibbeln, Martin, 2009. "Markowitz versus Michaud: Portfolio optimization strategies reconsidered," Working Papers IF30V3, Technische Universität Braunschweig, Institute of Finance.
    3. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    4. Marie Brière & Ariane Szafarz, 2021. "When it rains, it pours: Multifactor asset management in good and bad times," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 641-669, September.
    5. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    6. Calvet, Laurent E. & Betermier, Sebastien & Jo, Evan, 2019. "A Supply and Demand Approach to Equity Pricing," CEPR Discussion Papers 13974, C.E.P.R. Discussion Papers.
    7. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    8. Haim Levy & Enrico G. De Giorgi & Thorsten Hens, 2012. "Two Paradigms and Nobel Prizes in Economics: a Contradiction or Coexistence?," European Financial Management, European Financial Management Association, vol. 18(2), pages 163-182, March.
    9. W. Arrata & B. Nguyen, 2017. "Price impact of bond supply shocks: Evidence from the Eurosystem's asset purchase program," Working papers 623, Banque de France.
    10. Gonçalo Faria & João Correia-da-Silva, 2016. "Is stochastic volatility relevant for dynamic portfolio choice under ambiguity?," The European Journal of Finance, Taylor & Francis Journals, vol. 22(7), pages 601-626, May.
    11. Mark H.A. Davis & Sébastien Lleo, 2021. "Risk‐sensitive benchmarked asset management with expert forecasts," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1162-1189, October.
    12. Maxime C. Cohen & Antoine Désir & Nitish Korula & Balasubramanian Sivan, 2023. "Best of Both Worlds Ad Contracts: Guaranteed Allocation and Price with Programmatic Efficiency," Management Science, INFORMS, vol. 69(7), pages 4027-4050, July.
    13. James DiLellio, 2015. "A Kalman filter control technique in mean-variance portfolio management," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(2), pages 235-261, April.
    14. Moshe Levy & Haim Levy, 2024. "Market Equilibrium and the Cost of Capital with Heterogeneous Investment Horizons," Risks, MDPI, vol. 12(3), pages 1-16, February.
    15. Xinyu Huang & Weihao Han & David Newton & Emmanouil Platanakis & Dimitrios Stafylas & Charles Sutcliffe, 2023. "The diversification benefits of cryptocurrency asset categories and estimation risk: pre and post Covid-19," The European Journal of Finance, Taylor & Francis Journals, vol. 29(7), pages 800-825, May.
    16. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    17. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    18. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    19. Tze Leung Lai & Haipeng Xing & Zehao Chen, 2011. "Mean--variance portfolio optimization when means and covariances are unknown," Papers 1108.0996, arXiv.org.
    20. Penman, Stephen & Zhu, Julie, 2022. "An accounting-based asset pricing model and a fundamental factor," Journal of Accounting and Economics, Elsevier, vol. 73(2).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.13486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.