IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.05987.html
   My bibliography  Save this paper

Data-Driven Real-time Coupon Allocation in the Online Platform

Author

Listed:
  • Jinglong Dai
  • Hanwei Li
  • Weiming Zhu
  • Jianfeng Lin
  • Binqiang Huang

Abstract

Traditionally, firms have offered coupons to customer groups at predetermined discount rates. However, advancements in machine learning and the availability of abundant customer data now enable platforms to provide real-time customized coupons to individuals. In this study, we partner with Meituan, a leading shopping platform, to develop a real-time, end-to-end coupon allocation system that is fast and effective in stimulating demand while adhering to marketing budgets when faced with uncertain traffic from a diverse customer base. Leveraging comprehensive customer and product features, we estimate Conversion Rates (CVR) under various coupon values and employ isotonic regression to ensure the monotonicity of predicted CVRs with respect to coupon value. Using calibrated CVR predictions as input, we propose a Lagrangian Dual-based algorithm that efficiently determines optimal coupon values for each arriving customer within 50 milliseconds. We theoretically and numerically investigate the model performance under parameter misspecifications and apply a control loop to adapt to real-time updated information, thereby better adhering to the marketing budget. Finally, we demonstrate through large-scale field experiments and observational data that our proposed coupon allocation algorithm outperforms traditional approaches in terms of both higher conversion rates and increased revenue. As of May 2024, Meituan has implemented our framework to distribute coupons to over 100 million users across more than 110 major cities in China, resulting in an additional CNY 8 million in annual profit. We demonstrate how to integrate a machine learning prediction model for estimating customer CVR, a Lagrangian Dual-based coupon value optimizer, and a control system to achieve real-time coupon delivery while dynamically adapting to random customer arrival patterns.

Suggested Citation

  • Jinglong Dai & Hanwei Li & Weiming Zhu & Jianfeng Lin & Binqiang Huang, 2024. "Data-Driven Real-time Coupon Allocation in the Online Platform," Papers 2406.05987, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2406.05987
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.05987
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duncan M. Holthausen, Jr. & Gert Assmus, 1982. "Advertising Budget Allocation under Uncertainty," Management Science, INFORMS, vol. 28(5), pages 487-499, May.
    2. Qiao Liu & Qiaowei Shen & Zhenghua Li & Shu Chen, 2021. "Stimulating Consumption at Low Budget: Evidence from a Large-Scale Policy Experiment Amid the COVID-19 Pandemic," Management Science, INFORMS, vol. 67(12), pages 7291-7307, December.
    3. Ming Chen & Zhi-Long Chen, 2015. "Recent Developments in Dynamic Pricing Research: Multiple Products, Competition, and Limited Demand Information," Production and Operations Management, Production and Operations Management Society, vol. 24(5), pages 704-731, May.
    4. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
    5. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    6. Imke Reimers & Claire (Chunying) Xie, 2019. "Do Coupons Expand or Cannibalize Revenue? Evidence from an e-Market," Management Science, INFORMS, vol. 65(1), pages 286-300, January.
    7. Arun Gopalakrishnan & Young-Hoon Park, 2021. "The Impact of Coupons on the Visit-to-Purchase Funnel," Marketing Science, INFORMS, vol. 40(1), pages 48-61, January.
    8. Marc Fischer & Sönke Albers & Nils Wagner & Monika Frie, 2011. "Practice Prize Winner --Dynamic Marketing Budget Allocation Across Countries, Products, and Marketing Activities," Marketing Science, INFORMS, vol. 30(4), pages 568-585, July.
    9. Navdeep S. Sahni & Dan Zou & Pradeep K. Chintagunta, 2017. "Do Targeted Discount Offers Serve as Advertising? Evidence from 70 Field Experiments," Management Science, INFORMS, vol. 63(8), pages 2688-2705, August.
    10. Chun‐Hung Chiu & Tsan‐Ming Choi & Xin Dai & Bin Shen & Jin‐Hui Zheng, 2018. "Optimal Advertising Budget Allocation in Luxury Fashion Markets with Social Influences: A Mean‐Variance Analysis," Production and Operations Management, Production and Operations Management Society, vol. 27(8), pages 1611-1629, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Yongrui & Liu, Tonghui & Mao, Zhixin, 2022. "How online reviews and coupons affect sales and pricing: An empirical study based on e-commerce platform," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    2. Fang, Fei & Nguyen, Tri-Dung & Currie, Christine S.M., 2021. "Joint pricing and inventory decisions for substitutable and perishable products under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 594-602.
    3. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
    4. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    5. Tong Wang & Cheng He & Fujie Jin & Yu Jeffrey Hu, 2022. "Evaluating the Effectiveness of Marketing Campaigns for Malls Using a Novel Interpretable Machine Learning Model," Information Systems Research, INFORMS, vol. 33(2), pages 659-677, June.
    6. Qiao Liu & Qiaowei Shen & Zhenghua Li & Shu Chen, 2021. "Stimulating Consumption at Low Budget: Evidence from a Large-Scale Policy Experiment Amid the COVID-19 Pandemic," Management Science, INFORMS, vol. 67(12), pages 7291-7307, December.
    7. Hamidreza Koosha & Amir Albadvi, 2020. "Allocation of marketing budgets to maximize customer equity," Operational Research, Springer, vol. 20(2), pages 561-583, June.
    8. Ming Chen & Zhi-Long Chen, 2018. "Robust Dynamic Pricing with Two Substitutable Products," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 249-268, May.
    9. Yanwu Yang & Daniel Zeng & Yinghui Yang & Jie Zhang, 2015. "Optimal Budget Allocation Across Search Advertising Markets," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 285-300, May.
    10. Lebedev, Denis & Goulart, Paul & Margellos, Kostas, 2021. "A dynamic programming framework for optimal delivery time slot pricing," European Journal of Operational Research, Elsevier, vol. 292(2), pages 456-468.
    11. Zhou, Yong-Wu & Lin, Xiaogang & Zhong, Yuanguang & Xie, Wei, 2019. "Contract selection for a multi-service sharing platform with self-scheduling capacity," Omega, Elsevier, vol. 86(C), pages 198-217.
    12. Sentao Miao & Xiuli Chao, 2021. "Dynamic Joint Assortment and Pricing Optimization with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 525-545, March.
    13. Hu, Li & Zhang, Mengwei & Wen, Xin, 2023. "Optimal distribution strategy of coupons on e-commerce platforms: Sufficient or scarce?," International Journal of Production Economics, Elsevier, vol. 266(C).
    14. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    15. Gökgür, Burak & Karabatı, Selçuk, 2019. "Dynamic and targeted bundle pricing of two independently valued products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 184-198.
    16. Paul B. Ellickson & Wreetabrata Kar & James C. Reeder, 2023. "Estimating Marketing Component Effects: Double Machine Learning from Targeted Digital Promotions," Marketing Science, INFORMS, vol. 42(4), pages 704-728, July.
    17. Xing Hu & Zhixi Wan & Nagesh N. Murthy, 2019. "Dynamic Pricing of Limited Inventories with Product Returns," Manufacturing & Service Operations Management, INFORMS, vol. 21(3), pages 501-518, July.
    18. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    19. Siqin, Tana & Yang, Lu & Chung, Sai-Ho & Wen, Xin, 2024. "Cross-channel influences in mobile-app-website e-commerce supply chains: When to weaken the influence?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    20. Yiwei Chen & Nikolaos Trichakis, 2021. "Technical Note—On Revenue Management with Strategic Customers Choosing When and What to Buy," Operations Research, INFORMS, vol. 69(1), pages 175-187, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.05987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.