Orthogonal Bootstrap: Efficient Simulation of Input Uncertainty
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Kline Patrick & Santos Andres, 2012.
"A Score Based Approach to Wild Bootstrap Inference,"
Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
- Patrick M. Kline & Andres Santos, 2010. "A Score Based Approach to Wild Bootstrap Inference," NBER Working Papers 16127, National Bureau of Economic Research, Inc.
- Srijan Sengupta & Stanislav Volgushev & Xiaofeng Shao, 2016. "A Subsampled Double Bootstrap for Massive Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1222-1232, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," THEMA Working Papers 2024-01, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," Papers 2402.05030, arXiv.org, revised Nov 2024.
- Kaido, Hiroaki, 2017.
"Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable,"
Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
- Hiroaki Kaido, 2013. "Asymptotically Efficient Estimation of Weighted Average Derivatives with an Inverval Censored Variable," Boston University - Department of Economics - Working Papers Series 2013-022, Boston University - Department of Economics.
- Hiroaki Kaido, 2014. "Asymptotically efficient estimation of weighted average derivatives with an interval censored variable," CeMMAP working papers 03/14, Institute for Fiscal Studies.
- Hiroaki Kaido, 2014. "Asymptotically efficient estimation of weighted average derivatives with an interval censored variable," CeMMAP working papers CWP03/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023.
"Design-Based Identification with Formula Instruments: A Review,"
NBER Working Papers
31393, National Bureau of Economic Research, Inc.
- Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-based identification with formula instruments: A review," CeMMAP working papers 12/23, Institute for Fiscal Studies.
- Borusyak, Kirill & Hull, Peter & Jaravel, Xavier, 2024. "Design-based identification with formula instruments: a review," LSE Research Online Documents on Economics 123848, London School of Economics and Political Science, LSE Library.
- Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
- Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020.
"Optimal data collection for randomized control trials,"
The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 15/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 45/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Carneiro, Pedro & Lee, Sokbae & Wilhelm, Daniel, 2016. "Optimal Data Collection for Randomized Control Trials," IZA Discussion Papers 9908, Institute of Labor Economics (IZA).
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2019. "Optimal Data Collection for Randomized Control Trials," CeMMAP working papers CWP21/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers 15/16, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP45/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2016. "Optimal Data Collection for Randomized Control Trials," Papers 1603.03675, arXiv.org, revised Aug 2016.
- Sung Jae Jun & Sokbae Lee, 2024.
"Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
- Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
- Soren Blomquist & Anil Kumar & Che-Yuan Liang & Whitney K. Newey, 2022.
"Nonlinear Budget Set Regressions for the Random Utility Model,"
Working Papers
2219, Federal Reserve Bank of Dallas.
- Sören Blomquist & Anil Kumar & Che-Yuan Liang & Whitney Newey, 2023. "Nonlinear Budget Set Regressions for the Random Utility Model," NBER Working Papers 31194, National Bureau of Economic Research, Inc.
- Federico Belotti & Edoardo Di Porto & Gianluca Santoni, 2021.
"The effect of local taxes on firm performance: Evidence from geo‐referenced data,"
Journal of Regional Science, Wiley Blackwell, vol. 61(2), pages 492-510, March.
- Belotti, Federico & Di Porto, Edoardo & Santoni, Gianluca, 2016. "The effect of local taxes on firm performance: evidence from geo-referenced data," Working Paper Series 2016:3, Uppsala University, Department of Economics.
- Federico Belotti & Edoardo Di Porto & Gianluca Santoni, 2016. "The Effect of Local Taxes on Firm Performance: Evidence from Geo-referenced Data," CSEF Working Papers 430, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- Federico Belotti & Edoardo Di Porto & Gianluca Santoni, 2016. "The Effect of Local Taxes on Firm Performance: Evidence from Geo-referenced Data," CEIS Research Paper 377, Tor Vergata University, CEIS, revised 13 Apr 2016.
- Federico Belotti & Edoardo di Porto & Gianluca Santoni, 2016. "The effect of local taxes on firm performance: evidence from geo referenced data," Working Papers 2016-03, CEPII research center.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023.
"Fast and reliable jackknife and bootstrap methods for cluster‐robust inference,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference," Working Paper 1485, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference," Papers 2301.04527, arXiv.org, revised Feb 2023.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2024-06-17 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.19145. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.