IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.18470.html
   My bibliography  Save this paper

ECC Analyzer: Extract Trading Signal from Earnings Conference Calls using Large Language Model for Stock Performance Prediction

Author

Listed:
  • Yupeng Cao
  • Zhi Chen
  • Qingyun Pei
  • Nathan Jinseok Lee
  • K. P. Subbalakshmi
  • Papa Momar Ndiaye

Abstract

In the realm of financial analytics, leveraging unstructured data, such as earnings conference calls (ECCs), to forecast stock volatility is a critical challenge that has attracted both academics and investors. While previous studies have used multimodal deep learning-based models to obtain a general view of ECCs for volatility predicting, they often fail to capture detailed, complex information. Our research introduces a novel framework: \textbf{ECC Analyzer}, which utilizes large language models (LLMs) to extract richer, more predictive content from ECCs to aid the model's prediction performance. We use the pre-trained large models to extract textual and audio features from ECCs and implement a hierarchical information extraction strategy to extract more fine-grained information. This strategy first extracts paragraph-level general information by summarizing the text and then extracts fine-grained focus sentences using Retrieval-Augmented Generation (RAG). These features are then fused through multimodal feature fusion to perform volatility prediction. Experimental results demonstrate that our model outperforms traditional analytical benchmarks, confirming the effectiveness of advanced LLM techniques in financial analysis.

Suggested Citation

  • Yupeng Cao & Zhi Chen & Qingyun Pei & Nathan Jinseok Lee & K. P. Subbalakshmi & Papa Momar Ndiaye, 2024. "ECC Analyzer: Extract Trading Signal from Earnings Conference Calls using Large Language Model for Stock Performance Prediction," Papers 2404.18470, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2404.18470
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.18470
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lynnette Purda & David Skillicorn, 2015. "Accounting Variables, Deception, and a Bag of Words: Assessing the Tools of Fraud Detection," Contemporary Accounting Research, John Wiley & Sons, vol. 32(3), pages 1193-1223, September.
    2. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    2. Dennis W. Campbell & Ruidi Shang, 2022. "Tone at the Bottom: Measuring Corporate Misconduct Risk from the Text of Employee Reviews," Management Science, INFORMS, vol. 68(9), pages 7034-7053, September.
    3. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    4. Kerstin Lopatta & Mario Albert Gloger & Reemda Jaeschke, 2017. "Can Language Predict Bankruptcy? The Explanatory Power of Tone in 10‐K Filings," Accounting Perspectives, John Wiley & Sons, vol. 16(4), pages 315-343, December.
    5. Elshandidy, Tamer & Kamel, Hany, 2024. "Tone of narrative disclosures and earnings management: UK evidence," Advances in accounting, Elsevier, vol. 64(C).
    6. Senave, Elseline & Jans, Mieke J. & Srivastava, Rajendra P., 2023. "The application of text mining in accounting," International Journal of Accounting Information Systems, Elsevier, vol. 50(C).
    7. Craja, Patricia & Kim, Alisa & Lessmann, Stefan, 2020. "Deep Learning application for fraud detection in financial statements," IRTG 1792 Discussion Papers 2020-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    9. Goedde-Menke, Michael & Langer, Thomas & Pfingsten, Andreas, 2014. "Impact of the financial crisis on bank run risk – Danger of the days after," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 522-533.
    10. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    11. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
    12. Lixiang Wang & Wendi Hou & Yupei Liu, 2023. "How do co‐shareholding networks affect negative media coverage? Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4221-4249, December.
    13. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    14. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    15. Christopher N. Avery & Judith A. Chevalier & Richard J. Zeckhauser, 2016. "The "CAPS" Prediction System and Stock Market Returns," Review of Finance, European Finance Association, vol. 20(4), pages 1363-1381.
    16. Keval Amin & Erica Harris, 2022. "The Effect of Investor Sentiment on Nonprofit Donations," Journal of Business Ethics, Springer, vol. 175(2), pages 427-450, January.
    17. Femg, Xunan & Johansson, Anders C., 2019. "News or Noise? The Information Content of Social Media in China," Stockholm School of Economics Asia Working Paper Series 2019-52, Stockholm School of Economics, Stockholm China Economic Research Institute.
    18. King, Timothy & Srivastav, Abhishek & Williams, Jonathan, 2016. "What's in an education? Implications of CEO education for bank performance," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 287-308.
    19. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    20. André Betzer & Jan Philipp Harries, 2022. "How online discussion board activity affects stock trading: the case of GameStop," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(4), pages 443-472, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.18470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.