IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.18017.html
   My bibliography  Save this paper

Application of Deep Learning for Factor Timing in Asset Management

Author

Listed:
  • Prabhu Prasad Panda
  • Maysam Khodayari Gharanchaei
  • Xilin Chen
  • Haoshu Lyu

Abstract

The paper examines the performance of regression models (OLS linear regression, Ridge regression, Random Forest, and Fully-connected Neural Network) on the prediction of CMA (Conservative Minus Aggressive) factor premium and the performance of factor timing investment with them. Out-of-sample R-squared shows that more flexible models have better performance in explaining the variance in factor premium of the unseen period, and the back testing affirms that the factor timing based on more flexible models tends to over perform the ones with linear models. However, for flexible models like neural networks, the optimal weights based on their prediction tend to be unstable, which can lead to high transaction costs and market impacts. We verify that tilting down the rebalance frequency according to the historical optimal rebalancing scheme can help reduce the transaction costs.

Suggested Citation

  • Prabhu Prasad Panda & Maysam Khodayari Gharanchaei & Xilin Chen & Haoshu Lyu, 2024. "Application of Deep Learning for Factor Timing in Asset Management," Papers 2404.18017, arXiv.org.
  • Handle: RePEc:arx:papers:2404.18017
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.18017
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Breeden, Douglas T., 1979. "An intertemporal asset pricing model with stochastic consumption and investment opportunities," Journal of Financial Economics, Elsevier, vol. 7(3), pages 265-296, September.
    3. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    4. Reinganum, Marc R., 1981. "A New Empirical Perspective on the CAPM," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 16(4), pages 439-462, November.
    5. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    6. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    7. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    8. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    9. Shanken, Jay, 1982. "The Arbitrage Pricing Theory: Is It Testable?," Journal of Finance, American Finance Association, vol. 37(5), pages 1129-1140, December.
    10. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    11. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    12. Shanken, J. & Weinstein, M.I., 1990. "Macroeconomics Variables and Asset Pricing : Further Results," Papers 91-05, Rochester, Business - Managerial Economics Research Center.
    13. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    14. Chen, Nai-Fu, 1991. "Financial Investment Opportunities and the Macroeconomy," Journal of Finance, American Finance Association, vol. 46(2), pages 529-554, June.
    15. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    16. Chan, K. C. & Chen, Nai-fu & Hsieh, David A., 1985. "An exploratory investigation of the firm size effect," Journal of Financial Economics, Elsevier, vol. 14(3), pages 451-471, September.
    17. repec:bla:jfinan:v:44:y:1989:i:2:p:231-62 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    2. Chiang, I-Hsuan Ethan & Liao, Yin & Zhou, Qing, 2021. "Modeling the cross-section of stock returns using sensible models in a model pool," Journal of Empirical Finance, Elsevier, vol. 60(C), pages 56-73.
    3. Shanken, Jay & Weinstein, Mark I., 2006. "Economic forces and the stock market revisited," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 129-144, March.
    4. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    5. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    6. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    7. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    8. Nusret Cakici & Christian Fieberg & Daniel Metko & Adam Zaremba, 2024. "Do Anomalies Really Predict Market Returns? New Data and New Evidence," Review of Finance, European Finance Association, vol. 28(1), pages 1-44.
    9. Huang, Dashan & Li, Jiangyuan & Wang, Liyao, 2021. "Are disagreements agreeable? Evidence from information aggregation," Journal of Financial Economics, Elsevier, vol. 141(1), pages 83-101.
    10. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    11. Jian Chen & Jiaquan Yao & Qunzi Zhang & Xiaoneng Zhu, 2023. "Global Disaster Risk Matters," Management Science, INFORMS, vol. 69(1), pages 576-597, January.
    12. Yaojie Zhang & Mengxi He & Zhikai Zhang, 2024. "Forecasting stock returns with industry volatility concentration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2705-2730, November.
    13. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    14. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    15. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    16. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    17. Magdalena Mikolajek-Gocejna, 2021. "Estimation, Instability, and Non-Stationarity of Beta Coefficients for Twenty-four Emerging Markets in 2005-2021," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 370-395.
    18. repec:dau:papers:123456789/2514 is not listed on IDEAS
    19. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    20. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    21. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.18017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.