IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.15023.html
   My bibliography  Save this paper

The checkerboard copula and dependence concepts

Author

Listed:
  • Liyuan Lin
  • Ruodu Wang
  • Ruixun Zhang
  • Chaoyi Zhao

Abstract

We study the problem of choosing the copula when the marginal distributions of a random vector are not all continuous. Inspired by four motivating examples including simulation from copulas, stress scenarios, co-risk measures, and dependence measures, we propose to use the checkerboard copula, that is, intuitively, the unique copula with a distribution that is as uniform as possible within regions of flexibility. We show that the checkerboard copula has the largest Shannon entropy, which means that it carries the least information among all possible copulas for a given random vector. Furthermore, the checkerboard copula preserves the dependence information of the original random vector, leading to two applications in the context of diversification penalty and impact portfolios. The numerical and empirical results illustrate the benefits of using the checkerboard copula in the calculation of co-risk measures.

Suggested Citation

  • Liyuan Lin & Ruodu Wang & Ruixun Zhang & Chaoyi Zhao, 2024. "The checkerboard copula and dependence concepts," Papers 2404.15023, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2404.15023
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.15023
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2024. "Risk exchange under infinite-mean Pareto models," Papers 2403.20171, arXiv.org.
    4. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    5. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    6. Block, Henry W. & Savits, Thomas H. & Shaked, Moshe, 1985. "A concept of negative dependence using stochastic ordering," Statistics & Probability Letters, Elsevier, vol. 3(2), pages 81-86, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kojadinovic, Ivan & Stemikovskaya, Kristina, 2019. "Subsampling (weighted smooth) empirical copula processes," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 704-723.
    2. C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
    3. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
    4. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    5. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    6. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
    7. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    8. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    9. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    10. Tolulope Fadina & Yang Liu & Ruodu Wang, 2021. "A Framework for Measures of Risk under Uncertainty," Papers 2110.10792, arXiv.org, revised Sep 2023.
    11. Li, Hengxin & Wang, Ruodu, 2023. "PELVE: Probability Equivalent Level of VaR and ES," Journal of Econometrics, Elsevier, vol. 234(1), pages 353-370.
    12. Xia Han & Liyuan Lin & Ruodu Wang, 2023. "Diversification quotients based on VaR and ES," Papers 2301.03517, arXiv.org, revised May 2023.
    13. Han, Xia & Lin, Liyuan & Wang, Ruodu, 2023. "Diversification quotients based on VaR and ES," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 185-197.
    14. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    15. Timo Dimitriadis & Yannick Hoga, 2023. "Regressions under Adverse Conditions," Papers 2311.13327, arXiv.org, revised Jul 2024.
    16. Xia Han & Qiuqi Wang & Ruodu Wang & Jianming Xia, 2021. "Cash-subadditive risk measures without quasi-convexity," Papers 2110.12198, arXiv.org, revised May 2024.
    17. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2022. "Ordering and inequalities for mixtures on risk aggregation," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 421-451, January.
    18. Gao, Guangyuan & Li, Jiahong, 2023. "Dependence modeling of frequency-severity of insurance claims using waiting time," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 29-51.
    19. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    20. Nagler, Thomas, 2018. "A generic approach to nonparametric function estimation with mixed data," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 326-330.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.15023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.