IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.11276.html
   My bibliography  Save this paper

Towards Data-Centric Automatic R&D

Author

Listed:
  • Haotian Chen
  • Xinjie Shen
  • Zeqi Ye
  • Wenjun Feng
  • Haoxue Wang
  • Xiao Yang
  • Xu Yang
  • Weiqing Liu
  • Jiang Bian

Abstract

The progress of humanity is driven by those successful discoveries accompanied by countless failed experiments. Researchers often seek the potential research directions by reading and then verifying them through experiments. The process imposes a significant burden on researchers. In the past decade, the data-driven black-box deep learning method has demonstrated its effectiveness in a wide range of real-world scenarios, which exacerbates the experimental burden of researchers and thus renders the potential successful discoveries veiled. Therefore, automating such a research and development (R&D) process is an urgent need. In this paper, we serve as the first effort to formalize the goal by proposing a Real-world Data-centric automatic R&D Benchmark, namely RD2Bench. RD2Bench benchmarks all the operations in data-centric automatic R&D (D-CARD) as a whole to navigate future work toward our goal directly. We focus on evaluating the interaction and synergistic effects of various model capabilities and aiding in selecting well-performing trustworthy models. Although RD2Bench is very challenging to the state-of-the-art (SOTA) large language model (LLM) named GPT-4, indicating ample research opportunities and more research efforts, LLMs possess promising potential to bring more significant development to D-CARD: They are able to implement some simple methods without adopting any additional techniques. We appeal to future work to take developing techniques for tackling automatic R&D into consideration, thus bringing the opportunities of the potential revolutionary upgrade to human productivity.

Suggested Citation

  • Haotian Chen & Xinjie Shen & Zeqi Ye & Wenjun Feng & Haoxue Wang & Xiao Yang & Xu Yang & Weiqing Liu & Jiang Bian, 2024. "Towards Data-Centric Automatic R&D," Papers 2404.11276, arXiv.org, revised Jul 2024.
  • Handle: RePEc:arx:papers:2404.11276
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.11276
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniil A. Boiko & Robert MacKnight & Ben Kline & Gabe Gomes, 2023. "Autonomous chemical research with large language models," Nature, Nature, vol. 624(7992), pages 570-578, December.
    2. Xu Yang & Xiao Yang & Weiqing Liu & Jinhui Li & Peng Yu & Zeqi Ye & Jiang Bian, 2023. "Leveraging Large Language Model for Automatic Evolving of Industrial Data-Centric R&D Cycle," Papers 2310.11249, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mateusz Płoszaj-Mazurek & Elżbieta Ryńska, 2024. "Artificial Intelligence and Digital Tools for Assisting Low-Carbon Architectural Design: Merging the Use of Machine Learning, Large Language Models, and Building Information Modeling for Life Cycle As," Energies, MDPI, vol. 17(12), pages 1-21, June.
    2. Xiaoning Qi & Lianhe Zhao & Chenyu Tian & Yueyue Li & Zhen-Lin Chen & Peipei Huo & Runsheng Chen & Xiaodong Liu & Baoping Wan & Shengyong Yang & Yi Zhao, 2024. "Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.11276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.