IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.07225.html
   My bibliography  Save this paper

Unveiling the Impact of Macroeconomic Policies: A Double Machine Learning Approach to Analyzing Interest Rate Effects on Financial Markets

Author

Listed:
  • Anoop Kumar
  • Suresh Dodda
  • Navin Kamuni
  • Rajeev Kumar Arora

Abstract

This study examines the effects of macroeconomic policies on financial markets using a novel approach that combines Machine Learning (ML) techniques and causal inference. It focuses on the effect of interest rate changes made by the US Federal Reserve System (FRS) on the returns of fixed income and equity funds between January 1986 and December 2021. The analysis makes a distinction between actively and passively managed funds, hypothesizing that the latter are less susceptible to changes in interest rates. The study contrasts gradient boosting and linear regression models using the Double Machine Learning (DML) framework, which supports a variety of statistical learning techniques. Results indicate that gradient boosting is a useful tool for predicting fund returns; for example, a 1% increase in interest rates causes an actively managed fund's return to decrease by -11.97%. This understanding of the relationship between interest rates and fund performance provides opportunities for additional research and insightful, data-driven advice for fund managers and investors

Suggested Citation

  • Anoop Kumar & Suresh Dodda & Navin Kamuni & Rajeev Kumar Arora, 2024. "Unveiling the Impact of Macroeconomic Policies: A Double Machine Learning Approach to Analyzing Interest Rate Effects on Financial Markets," Papers 2404.07225, arXiv.org.
  • Handle: RePEc:arx:papers:2404.07225
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.07225
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    2. Neng-Chieh Chang, 2020. "Double/debiased machine learning for difference-in-differences models," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 177-191.
    3. Samar Wazir & Gautam Siddharth Kashyap & Karan Malik & Alexander E. I. Brownlee, 2023. "Predicting the Infection Level of COVID-19 Virus Using Normal Distribution-Based Approximation Model and PSO," Springer Optimization and Its Applications, in: Zakia Hammouch & Mohamed Lahby & Dumitru Baleanu (ed.), Mathematical Modeling and Intelligent Control for Combating Pandemics, pages 75-91, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    2. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.
    4. Sallin, AureliƩn, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    5. Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
    6. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    7. Vijaya Krishna Kanaparthi, 2024. "Navigating Uncertainty: Enhancing Markowitz Asset Allocation Strategies through Out-of-Sample Analysis," FinTech, MDPI, vol. 3(1), pages 1-22, February.
    8. Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023. "Criminal charges, risk assessment and violent recidivism in cases of domestic abuse," LSE Research Online Documents on Economics 121374, London School of Economics and Political Science, LSE Library.
    9. Martin Huber & Eva-Maria Oe{ss}, 2024. "A joint test of unconfoundedness and common trends," Papers 2404.16961, arXiv.org, revised Jun 2024.
    10. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    11. Strittmatter, Anthony & Wunsch, Conny, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," Working papers 2021/05, Faculty of Business and Economics - University of Basel.
    12. Luyuan Song & Xiaojun Zhang, 2024. "Estimating the Individual Treatment Effect with Different Treatment Group Sizes," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    13. Heejun Shin & Joseph Antonelli, 2023. "Improved inference for doubly robust estimators of heterogeneous treatment effects," Biometrics, The International Biometric Society, vol. 79(4), pages 3140-3152, December.
    14. Yong Bian & Xiqian Wang & Qin Zhang, 2023. "How Does China's Household Portfolio Selection Vary with Financial Inclusion?," Papers 2311.01206, arXiv.org.
    15. Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jul 2024.
    16. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," Economics working papers 2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
    17. Moshoeshoe,Ramaele Elias, 2020. "Long-Term Effects of Free Primary Education on Educational Achievement : Evidence from Lesotho," Policy Research Working Paper Series 9404, The World Bank.
    18. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    19. Yiyan Huang & Cheuk Hang Leung & Xing Yan & Qi Wu & Shumin Ma & Zhiri Yuan & Dongdong Wang & Zhixiang Huang, 2022. "Robust Causal Learning for the Estimation of Average Treatment Effects," Papers 2209.01805, arXiv.org.
    20. Simon Calmar Andersen & Louise Beuchert & Phillip Heiler & Helena Skyt Nielsen, 2023. "A Guide to Impact Evaluation under Sample Selection and Missing Data: Teacher's Aides and Adolescent Mental Health," Papers 2308.04963, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.07225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.