IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.16844.html
   My bibliography  Save this paper

Resistant Inference in Instrumental Variable Models

Author

Listed:
  • Jens Klooster
  • Mikhail Zhelonkin

Abstract

The classical tests in the instrumental variable model can behave arbitrarily if the data is contaminated. For instance, one outlying observation can be enough to change the outcome of a test. We develop a framework to construct testing procedures that are robust to weak instruments, outliers and heavy-tailed errors in the instrumental variable model. The framework is constructed upon M-estimators. By deriving the influence functions of the classical weak instrument robust tests, such as the Anderson-Rubin test, K-test and the conditional likelihood ratio (CLR) test, we prove their unbounded sensitivity to infinitesimal contamination. Therefore, we construct contamination resistant/robust alternatives. In particular, we show how to construct a robust CLR statistic based on Mallows type M-estimators and show that its asymptotic distribution is the same as that of the (classical) CLR statistic. The theoretical results are corroborated by a simulation study. Finally, we revisit three empirical studies affected by outliers and demonstrate how the new robust tests can be used in practice.

Suggested Citation

  • Jens Klooster & Mikhail Zhelonkin, 2024. "Resistant Inference in Instrumental Variable Models," Papers 2403.16844, arXiv.org.
  • Handle: RePEc:arx:papers:2403.16844
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.16844
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    2. Kern, Holger Lutz & Hainmueller, Jens, 2009. "Opium for the Masses: How Foreign Media Can Stabilize Authoritarian Regimes," Political Analysis, Cambridge University Press, vol. 17(4), pages 377-399.
    3. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022. "Valid t-Ratio Inference for IV," American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
    2. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    3. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    4. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    5. Ribeiro, André L.P. & Hotta, Luiz K., 2013. "An analysis of contagion among Asian countries using the canonical model of contagion," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 62-69.
    6. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    7. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    8. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    9. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    10. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    11. Manuel Denzer & Constantin Weiser, 2021. "Beyond F-statistic - A General Approach for Assessing Weak Identification," Working Papers 2107, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Doko Tchatoka, Firmin, 2011. "Testing for partial exogeneity with weak identification," MPRA Paper 39504, University Library of Munich, Germany, revised Mar 2012.
    13. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    14. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    15. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    16. Adrian Pagan, 2007. "Weak Instruments: A Guide to the Literature," NCER Working Paper Series 13, National Centre for Econometric Research.
    17. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    18. Hugo Faria & Hugo Montesinos, 2009. "Does economic freedom cause prosperity? An IV approach," Public Choice, Springer, vol. 141(1), pages 103-127, October.
    19. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    20. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    21. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2008. "Efficient two-sided nonsimilar invariant tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 146(2), pages 241-254, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.16844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.