IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.12078.html
   My bibliography  Save this paper

Student t-L\'evy regression model in YUIMA

Author

Listed:
  • Hiroki Masuda
  • Lorenzo Mercuri
  • Yuma Uehara

Abstract

The aim of this paper is to discuss an estimation and a simulation method in the \textsf{R} package YUIMA for a linear regression model driven by a Student-$t$ L\'evy process with constant scale and arbitrary degrees of freedom. This process finds applications in several fields, for example finance, physic, biology, etc. The model presents two main issues. The first is related to the simulation of a sample path at high-frequency level. Indeed, only the $t$-L\'evy increments defined on an unitary time interval are Student-$t$ distributed. In YUIMA, we solve this problem by means of the inverse Fourier transform for simulating the increments of a Student-$t$ L\'{e}vy defined on a interval with any length. A second problem is due to the fact that joint estimation of trend, scale, and degrees of freedom does not seem to have been investigated as yet. In YUIMA, we develop a two-step estimation procedure that efficiently deals with this issue. Numerical examples are given in order to explain methods and classes used in the YUIMA package.

Suggested Citation

  • Hiroki Masuda & Lorenzo Mercuri & Yuma Uehara, 2024. "Student t-L\'evy regression model in YUIMA," Papers 2403.12078, arXiv.org.
  • Handle: RePEc:arx:papers:2403.12078
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.12078
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    2. Haberman, Steven & Renshaw, Arthur, 2009. "On age-period-cohort parametric mortality rate projections," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 255-270, October.
    3. Loregian, Angela & Mercuri, Lorenzo & Rroji, Edit, 2012. "Approximation of the variance gamma model with a finite mixture of normals," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 217-224.
    4. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iguchi, Yuga & Beskos, Alexandros & Graham, Matthew M., 2024. "Parameter inference for degenerate diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    2. Iacus, Stefano M. & Mercuri, Lorenzo & Rroji, Edit, 2017. "COGARCH(p, q): Simulation and Inference with the yuima Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i04).
    3. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    4. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    5. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    6. Paola Biffi & Gian Clemente, 2014. "Selecting stochastic mortality models for the Italian population," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 255-286, October.
    7. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    8. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    9. Jinjing Li & Yogi Vidyattama, 2019. "Projecting spatial population and labour force growth in Australian districts," Journal of Population Research, Springer, vol. 36(3), pages 205-232, September.
    10. Beutner, Eric & Reese, Simon & Urbain, Jean-Pierre, 2017. "Identifiability issues of age–period and age–period–cohort models of the Lee–Carter type," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 117-125.
    11. Lin, Tzuling & Tsai, Cary Chi-Liang, 2016. "Hedging mortality/longevity risks of insurance portfolios for life insurer/annuity provider and financial intermediary," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 44-58.
    12. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    13. Lorenzo Mercuri & Edit Rroji, 2014. "Parametric Risk Parity," Papers 1409.7933, arXiv.org.
    14. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    15. Chen, An & Chen, Yusha & Xu, Xian, 2022. "Care-dependent tontines," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 69-89.
    16. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    17. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    18. Tsai, Cary Chi-Liang & Cheng, Echo Sihan, 2021. "Incorporating statistical clustering methods into mortality models to improve forecasting performances," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 42-62.
    19. Haberman, Steven & Renshaw, Arthur, 2012. "Parametric mortality improvement rate modelling and projecting," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 309-333.
    20. Matthew M. Graham & Alexandre H. Thiery & Alexandros Beskos, 2022. "Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1229-1256, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.12078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.