IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.01964.html
   My bibliography  Save this paper

The Heterogeneous Productivity Effects of Generative AI

Author

Listed:
  • David Kreitmeir
  • Paul A. Raschky

Abstract

We analyse the individual productivity effects of Italy's ban on ChatGPT, a generative pretrained transformer chatbot. We compile data on the daily coding output quantity and quality of over 36,000 GitHub users in Italy and other European countries and combine these data with the sudden announcement of the ban in a difference-in-differences framework. Among the affected users in Italy, we find a short-term increase in output quantity and quality for less experienced users and a decrease in productivity on more routine tasks for experienced users.

Suggested Citation

  • David Kreitmeir & Paul A. Raschky, 2024. "The Heterogeneous Productivity Effects of Generative AI," Papers 2403.01964, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2403.01964
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.01964
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximiliano Marzetti & Rok Spruk, 2023. "Long-Term Economic Effects of Populist Legal Reforms: Evidence from Argentina," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 65(1), pages 60-95, March.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    4. Jan Bruha & Jaromir Tonner, 2018. "An Exchange Rate Floor as an Instrument of Monetary Policy: An Ex-Post Assessment of the Czech Experience," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 68(6), pages 537-549, December.
    5. Samba Diop & Simplice A. Asongu & Vanessa S. Tchamyou, 2021. "Mitigating the Macroeconomic Impact of Severe Natural Disasters in Africa: Policy Synergies," Working Papers 21/094, European Xtramile Centre of African Studies (EXCAS).
    6. Lüth, Hendrik, 2021. "Reassessing Car Scrappage Schemes in Selected OECD Countries: A Synthetic Control Method Application," Working Paper 190/2021, Helmut Schmidt University, Hamburg.
    7. Wilmer Martínez-Rivera & Thomaz Carvalhaes & Petar Jevtić & T. Agami Reddy, 2023. "A treatment-effect model to quantify human dimensions of disaster impacts: the case of Hurricane Maria in Puerto Rico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2033-2068, March.
    8. Julia Levine & Stephan Seiler, 2023. "Identifying State Dependence in Brand Choice: Evidence from Hurricanes," Marketing Science, INFORMS, vol. 42(5), pages 934-957, September.
    9. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.
    10. Qili Wang & Liangfei Qiu & Wei Xu, 2024. "Informal Payments and Doctor Engagement in an Online Health Community: An Empirical Investigation Using Generalized Synthetic Control," Information Systems Research, INFORMS, vol. 35(2), pages 706-726, June.
    11. Alloush, Mo & Bloem, Jeffrey R., 2022. "Neighborhood violence, poverty, and psychological well-being," Journal of Development Economics, Elsevier, vol. 154(C).
    12. Benjamin Hansen & Drew McNichols, 2020. "Information and the Persistence of the Gender Wage Gap: Early Evidence from California's Salary History Ban," NBER Working Papers 27054, National Bureau of Economic Research, Inc.
    13. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    14. Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    15. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    16. Samba Diop & Simplice A. Asongu & Vanessa S. Tchamyou, 2021. "The Macroeconomic Impact of Recent Political Conflicts in Africa: Generalized Synthetic Counterfactual Evidence," Working Papers of the African Governance and Development Institute. 21/060, African Governance and Development Institute..
    17. Girma, Sourafel & Paton, David, 2022. "Is assisted suicide a substitute for unassisted suicide?," European Economic Review, Elsevier, vol. 145(C).
    18. Tomasz Serwach, 2023. "The European Union and within‐country income inequalities. The case of the new member states," The World Economy, Wiley Blackwell, vol. 46(7), pages 1890-1939, July.
    19. Michał Marcin Kobierecki & Michał Pierzgalski, 2022. "Sports Mega-Events and Economic Growth: A Synthetic Control Approach," Journal of Sports Economics, , vol. 23(5), pages 567-597, June.
    20. Kirill Borusyak & Xavier Jaravel & Jann Spiess, 2021. "Revisiting Event Study Designs: Robust and Efficient Estimation," Papers 2108.12419, arXiv.org, revised Jan 2024.

    More about this item

    JEL classification:

    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.01964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.