IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.14389.html
   My bibliography  Save this paper

Securing Transactions: A Hybrid Dependable Ensemble Machine Learning Model using IHT-LR and Grid Search

Author

Listed:
  • Md. Alamin Talukder
  • Rakib Hossen
  • Md Ashraf Uddin
  • Mohammed Nasir Uddin
  • Uzzal Kumar Acharjee

Abstract

Financial institutions and businesses face an ongoing challenge from fraudulent transactions, prompting the need for effective detection methods. Detecting credit card fraud is crucial for identifying and preventing unauthorized transactions.Timely detection of fraud enables investigators to take swift actions to mitigate further losses. However, the investigation process is often time-consuming, limiting the number of alerts that can be thoroughly examined each day. Therefore, the primary objective of a fraud detection model is to provide accurate alerts while minimizing false alarms and missed fraud cases. In this paper, we introduce a state-of-the-art hybrid ensemble (ENS) dependable Machine learning (ML) model that intelligently combines multiple algorithms with proper weighted optimization using Grid search, including Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Multilayer Perceptron (MLP), to enhance fraud identification. To address the data imbalance issue, we employ the Instant Hardness Threshold (IHT) technique in conjunction with Logistic Regression (LR), surpassing conventional approaches. Our experiments are conducted on a publicly available credit card dataset comprising 284,807 transactions. The proposed model achieves impressive accuracy rates of 99.66%, 99.73%, 98.56%, and 99.79%, and a perfect 100% for the DT, RF, KNN, MLP and ENS models, respectively. The hybrid ensemble model outperforms existing works, establishing a new benchmark for detecting fraudulent transactions in high-frequency scenarios. The results highlight the effectiveness and reliability of our approach, demonstrating superior performance metrics and showcasing its exceptional potential for real-world fraud detection applications.

Suggested Citation

  • Md. Alamin Talukder & Rakib Hossen & Md Ashraf Uddin & Mohammed Nasir Uddin & Uzzal Kumar Acharjee, 2024. "Securing Transactions: A Hybrid Dependable Ensemble Machine Learning Model using IHT-LR and Grid Search," Papers 2402.14389, arXiv.org.
  • Handle: RePEc:arx:papers:2402.14389
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.14389
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wilson Castro & Jimy Oblitas & Roberto Santa-Cruz & Himer Avila-George, 2017. "Multilayer perceptron architecture optimization using parallel computing techniques," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. R. S. Iruela & L. G. B. Ruiz & M. I. Capel & M. C. Pegalajar, 2021. "A TensorFlow Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency Realm," Energies, MDPI, vol. 14(13), pages 1-22, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.14389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.