IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.06635.html
   My bibliography  Save this paper

Large (and Deep) Factor Models

Author

Listed:
  • Bryan Kelly
  • Boris Kuznetsov
  • Semyon Malamud
  • Teng Andrea Xu

Abstract

We open up the black box behind Deep Learning for portfolio optimization and prove that a sufficiently wide and arbitrarily deep neural network (DNN) trained to maximize the Sharpe ratio of the Stochastic Discount Factor (SDF) is equivalent to a large factor model (LFM): A linear factor pricing model that uses many non-linear characteristics. The nature of these characteristics depends on the architecture of the DNN in an explicit, tractable fashion. This makes it possible to derive end-to-end trained DNN-based SDFs in closed form for the first time. We evaluate LFMs empirically and show how various architectural choices impact SDF performance. We document the virtue of depth complexity: With enough data, the out-of-sample performance of DNN-SDF is increasing in the NN depth, saturating at huge depths of around 100 hidden layers.

Suggested Citation

  • Bryan Kelly & Boris Kuznetsov & Semyon Malamud & Teng Andrea Xu, 2024. "Large (and Deep) Factor Models," Papers 2402.06635, arXiv.org.
  • Handle: RePEc:arx:papers:2402.06635
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.06635
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serhiy Kozak & Stefan Nagel, 2023. "When Do Cross-Sectional Asset Pricing Factors Span the Stochastic Discount Factor?," NBER Working Papers 31275, National Bureau of Economic Research, Inc.
    2. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    3. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    4. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    5. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    6. Juan-Pedro Gómez & Fernando Zapatero, 2001. "Asset pricing implications of benchmarking: A two-factor CAPM," Economics Working Papers 693, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    8. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    9. Jaspersen, Johannes G., 2022. "Convex combinations in judgment aggregation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 780-794.
    10. Nicolas Coeurdacier & Hélène Rey, 2013. "Home Bias in Open Economy Financial Macroeconomics," Journal of Economic Literature, American Economic Association, vol. 51(1), pages 63-115, March.
    11. John Knight & Stephen Satchell, 2005. "Exact Properties of Measures of Optimal Investment for Institutional Investors," Birkbeck Working Papers in Economics and Finance 0513, Birkbeck, Department of Economics, Mathematics & Statistics.
    12. Bodnar Taras & Schmid Wolfgang, 2011. "On the exact distribution of the estimated expected utility portfolio weights: Theory and applications," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 319-342, December.
    13. Jonathan Fletcher & Andrew Marshall, 2005. "The Performance of UK International Unit Trusts," European Financial Management, European Financial Management Association, vol. 11(3), pages 365-386, June.
    14. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2015. "Informatics, Data Mining, Econometrics and Financial Economics: A Connection," Econometric Institute Research Papers EI2015-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Yi Huang & Wei Zhu & Duan Li & Shushang Zhu & Shikun Wang, 2023. "Integrating Different Informations for Portfolio Selection," Papers 2305.17881, arXiv.org.
    16. Victor Chernozhukov & Emre Kocatulum & Konrad Menzel, 2015. "Inference on sets in finance," Quantitative Economics, Econometric Society, vol. 6(2), pages 309-358, July.
    17. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2013. "On the exact and approximate distributions of the product of a Wishart matrix with a normal vector," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 70-81.
    18. Yan, Lei & Garcia, Philip, 2017. "Portfolio investment: Are commodities useful?," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 43-55.
    19. Burkhardt, Raphael & Ulrych, Urban, 2023. "Sparse and stable international portfolio optimization and currency risk management," Journal of International Money and Finance, Elsevier, vol. 139(C).
    20. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.06635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.